5 resultados para HYBRID NANOPARTICLES
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Treatment of hepatocellular cancer with chemotherapeutic agents has limited successin clinical practice and their efficient IC50 concentration would require extremely highdoses of drug administration which could not be tolerated due to systemic side effects.In order to potentiate the efficacy of anticancer agents we explored the potentialof co-treatment with pro-apoptotic Cytochrome c which activates the apoptoticpathway downstream of p53 that is frequently mutated in cancer. To this end weused hybrid iron oxide-gold nanoparticles as a drug delivery system to facilitate theinternalisation of Cytochrome c into cultured HepG2 hepatocellular carcinoma cells.Our results showed that Cytochrome c can be easily conjugated to the gold shell ofthe nanoparticles which are readily taken up by the cells. We used Cytochrome cin concentration (0.2μgmL-1) below the threshold required to induce apoptosis onits own. When the conjugate was administered to cells treated by doxorubicin, itsignificantly reduced its IC50 concentration from 9μgmL-1 to 3.5μgmL-1 as detectedby cell viability assay, and the efficiency of doxorubicin on decreasing viability ofHepG2 cells was significantly enhanced in the lower concentration range between0.01μgmL-1 to 5μgmL-1. The results demonstrate the potential of the application oftherapeutic proteins in activating the apoptotic pathway to complement conventionalchemotherapy to increase its efficacy. The application of hybrid iron oxide-goldnanoparticles can also augment the specificity of drug targeting and could serve as amodel drug delivery system for pro-apoptotic protein targeting and delivery.
Resumo:
A facile method to synthesize a TiO2/PEDOT:PSS hybrid nanocomposite material in aqueous solution through direct current (DC) plasma processing at atmospheric pressure and room temperature has been demonstrated. The dispersion of the TiO2 nanoparticles is enhanced and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased electrical conductivity was observed for the plasma treated TiO2/PEDOT:PSS nanocomposite. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are proposed to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer binding.
Resumo:
Hybrid iron oxide-gold nanoparticles (HNPs) have shown potential in cancer therapy as agents for tumour ablation
and thermal switches for targeted drug release. Heat generation occurs by exploitation of the surface plasmon
resonance of the gold coating, which usually occurs at the maximum UV absorption wavelength. However, lasers
at such wavelength are often expensive and highly specialised. Here, we report the heating and monitoring of heat
dissipation of HNPs suspended in agar phantoms using a relatively inexpensive Ng: YAG pulsed 1064 nm laser source.
The particles experience heating of up to 40°C with a total area of heat dissipation up to 132.73 mm2 from the 1 mm
diameter irradiation point after 60 seconds. This work reports the potential and possible drawbacks of these particles
for translation into cancer therapy based on our findings.
Resumo:
In this work we demonstrate the synthesis of a TiO2/PEDOT:PSS nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. The dispersion of the TiO2 nanoparticles is enhanced after microplasma processing, and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. We have observed increased TiO2/PEDOT:PSS nanocomposite electrical conductivity due to microplasma processing. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding, which is expected to have a significant benefit in materials processing with inorganic nanoparticles for wide range of applications.
Resumo:
A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.