74 resultados para HUMAN BODY

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of its superior time resolution, ultra-wide bandwidth (UWB) transmission can be a highly accurate technique for ranging in indoor localization systems. Nevertheless, the presence of obstructions may deteriorate the ranging performance of the system. Indoor environments are often densely populated with people. However, t h e effect of the human body presence has been scarcely investigated so far within the UWB ranging context. In this work, we investigate this effect by conducting UWB measurements and analyzing the ranging performance of the system. Two measurement campaigns were performed in the 3-5.5 GHz band, in an anechoic chamber and a laboratory environment. The range estimates were obtained by employing the threshold-based first peak detection technique. Analysis results revealed that the human body significantly attenuates the direct-path signal component. On the other hand, in this study it does not introduce a significant range error since the length difference between the diffracted paths around the body and the direct-path is less than the spatial resolution of the measurement setup. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ - μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami- m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ - μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.