38 resultados para HPLC-ICP-MS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)(2), Hg(GS)(2), MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury-amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants.
Resumo:
The weakest step in the analytical procedure for speciation analysis is extraction from a biological material into an aqueous solution which undergoes HPLC separation and then simultaneous online detection by elemental and molecular mass spectrometry (ICP-MS/ES-MS). This paper describes a study to determine the speciation of arsenic and, in particular, the arsenite phytochelatin complexes in the root from an ornamental garden plant Thunbergia alata exposed to 1 mg As L(-1) as arsenate. The approach of formic acid extraction followed by HPLC-ES-MS/ICP-MS identified different As(III)-PC complexes in the extract of this plant and made their quantification via sulfur (m/z 32) and arsenic (m/z 75) possible. Although sulfur sensitivity could be significantly increased when xenon was used as collision gas in ICP-qMS, or when HR-ICP-MS was used in medium resolution, the As:S ratio gave misleading results in the identification of As(III)-PC complexes due to the relatively low resolution of the chromatography system in relation to the variety of As-peptides in plants. Hence only the parallel use of ES-MS/ICP-MS was able to prove the occurrence of such arsenite phytochelatin complexes. Between 55 and 64% of the arsenic was bound to the sulfur of peptides mainly as As(III)(PC(2))(2), As(III)(PC(3)) and As(III)(PC(4)). XANES (X-ray absorption near-edge spectroscopy) measurement, using the freshly exposed plant root directly, confirmed that most of the arsenic is trivalent and binds to S of peptides (53% As-S) while 38% occurred as arsenite and only 9% unchanged as arsenate. EXAFS data confirmed that As-S and As-O bonds occur in the plants. This study confirms, for the first time, that As-peptides can be extracted by formic acid and chromatographically separated on a reversed-phase column without significant decomposition or de-novo synthesis during the extraction step.
Resumo:
Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for total (t-As) and inorganic As (i-As) using ICP-MS and HPLC-ICP-MS, respectively. Besides, pure infant rice from China, USA, UK and Spain were also analysed. The i-As contents were significantly higher in gluten-free rice than in cereals mixtures with gluten, placing infants with celiac disease at high risk. All rice-based products displayed a high i-As content, with values being above 60% of the t-As content and the remainder being dimethylarsinic acid (DMA). Approximately 77% of the pure infant rice samples showed contents below 150 µg kg(-1) (Chinese limit). When daily intake of i-As by infants (4-12 months) was estimated and expressed on a bodyweight basis (µg d(-1) kg(-1)), it was higher in all infants aged 8-12 months than drinking water maximum exposures predicted for adults (assuming 1 L consumption per day for a 10 µg L(-1) standard).
Resumo:
The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain <husk <straw <root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.
Resumo:
Quantification and speciation of volatile selenium (Se) fluxes in remote areas has not been feasible previously, due to the absence of a simple and easily transportable trapping technique that preserves speciation. This paper presents a chemo-trapping method with nitric acid (HNO3) for volatile Se species, which preserves speciation of trapped compounds. The recovery and speciation of dimethylselenide (DMSe) and dimethyl diselenide (DMDSe) entrained through both concentrated nitric acid and hydrogen peroxide (H2O2) were compared by HPLC-ICP-MS and HPLC-HG-AFS analyses. It was demonstrated that trap reproducibility was better for nitric acid and a recovery of 65.2 +/- 1.9% for DMSe and 81.3 +/- 3.9% for DMDSe was found in nitric acid traps. HPLC-ES-MS identified dimethyl selenoxide (DMSeO) as the trapped product of DMSe. Methylseleninic acid (MSA) was identified to be the single product of DMDSe trapping. These oxidized derivatives have a high stability and low volatility, which makes nitric acid a highly attractive trapping liquid for volatile Se species and enables reconstruction of the speciation of those species. The presented trapping method is simple, quantifiable, reproducible, and robust and can potentially be applied to qualitatively and quantitatively study Se volatilization in a wide range of natural environments.
Resumo:
Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.
Resumo:
Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.
Resumo:
Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Two approaches were undertaken to characterize the arsenic (As) content of Chinese rice. First, a national market basket survey (n = 240) was conducted in provincial capitals, sourcing grain from China's premier rice production areas. Second, to reflect rural diets, paddy rice (n = 195) directly from farmers fields were collected from three regions in Hunan, a key rice producing province located in southern China. Two of the sites were within mining and smeltery districts, and the third was devoid of large-scale metal processing industries. Arsenic levels were determined in all the samples while a subset (n = 33) were characterized for As species, using a new simple and rapid extraction method suitable for use with Hamilton PRP-X100 anion exchange columns and HPLC-ICP-MS. The vast majority (85%) of the market rice grains possessed total As levels <150 ng g(-1). The rice collected from mine-impacted regions, however, were found to be highly enriched in As, reaching concentrations of up to 624 ng g(-1). Inorganic As (As(i)) was the predominant species detected in all of the speciated grain, with As(i) levels in some samples exceeding 300 ng g(-1). The As(i) concentration in polished and unpolished Chinese rice was successfully predicted from total As levels. The mean baseline concentrations for As(i) in Chinese market rice based on this survey were estimated to be 96 ng g(-1) while levels in mine-impacted areas were higher with ca. 50% of the rice in one region predicted to fail the national standard.
Resumo:
Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP-MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (micro-XANES) and bulk extraction followed by anion exchange HPLC-ICP-MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n=39) and brown (n=45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.
Resumo:
Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.
Resumo:
Two species of earthworm, Lumbricus rubellus Hoffmeister and Dendrodrilus rubidus (Savigny) collected from an arsenic-contaminated mine spoil site and an uncontaminated site were investigated for total tissue arsenic concentrations and for arsenic compounds by liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). For L. rubellus, whole-body total tissue arsenic concentrations were 7.0 to 17.0 mg arsenic/ kg dry weight in uncontaminated soil and 162 to 566 mg arsenic/kg dry weight in contaminated soil. For D. rubidus, whole-body tissue concentrations were 2.0 to 5.0 mg arsenic/kg dry weight and 97 to 321 mg arsenic/kg dry weight, respectively. Arsenobetaine was the only organic arsenic species detected in both species of earthworms, with the remainder of the extractable arsenic being arsenate and arsenite. There was an increase in the proportion of arsenic present as arsenobetaine in the total arsenic burden. Lumbricus rubellus and D. rubidus have similar life styles, both being surface living and litter feeding. Arsenic speciation was found to be similar in both species for both uncontaminated and contaminated sites, with dose-dependent formation of arsenobetaine. When L. rubellus and D. rabidus from contaminated sites were incubated in arsenic-free soils, the total tissue burden of arsenic diminished. Initially, L. rubellus from the tolerant populations (from the contaminated site) eliminated arsenic in the first 7 d of exposure before accumulating arsenic in tissues, whereas nontolerant populations (from the uncontaminated site) accumulated arsenic linearly. The tolerant and nontolerant L. rubellus eliminated tissue arsenic linearly over 21 d when incubated in uncontaminated soil.
Resumo:
For many coastal regions of the world, it has been common practice to apply seaweed to the land as a soil improver and fertilizer. Seaweed is rich in arsenosugars and has a tissue concentration of arsenic up to 100 micro/g g(-1). These arsenic species are relatively nontoxic to humans; however, in the environment they may accumulate in the soil and decompose to more toxic arsenic species. The aim of this study was to determine the fate and biotransformation of these arsenosugars in soil using HPLC-ICP-MS analysis. Data from coastal soils currently manured with seaweeds were used to investigate if arsenic was accumulating in these soils. Long-term application of seaweed increased arsenic concentrations in these soils up to 10-fold (0.35 mg of As kg(-1) for nonagronomic peat, 4.3 mg of As kg(-1) for seaweed-amended peat). The biotransformation of arsenic was studied in microcosm experiments in which a sandy (machair) soil, traditionally manured with seaweed, was amended with Laminaria digitata and Fucus vesiculosus. In both seaweed species, the arsenic occurs in the form of arsenosugars (85%). The application of 50 g of seaweed to 1 kg of soil leads to an increase of arsenic in the soils, and the dominating species found in the soil pore water were dimethylarsinic acid (DMA(V)) and the inorganic species arsenate (As(V)) and arsenite (As(III)) after the initial appearance of arsenosugars. A proposed decomposition pathway of arsenosugars is discussed in which the arsenosugars are transformed to DMA(V) and further to inorganic arsenic without appreciable amounts of methylarsonic acid (MA(V)). Commercially available seaweed-based fertilizers contain arsenic concentration between 10 and 50 mg kg(-1). The arsenic species in these fertilizers depends on the manufacturing procedure. Some contain mainly arsenosugars while others contain mainly DMA(V) and inorganic arsenic. With the application rates suggested by the manufacturers, the application of these fertilizers is 2 orders of magnitude lower than the maximum permissible sewage sludge load for arsenic (varies from 0.025 kg ha(-1) yr(-1) in Styria, Austria, to 0.7 kg ha(-1) yr(-1) in the U.K.), while a direct seaweed application would exceed the maximum arsenic load by at least a factor of 2.
Resumo:
Arsenic speciation was determined in Lumbricus rubellus Hoffmeister from arsenic-contaminated mine spoil sites and an uncontaminated site using HPLC-MS, HPLC-ICP-MS and XAS. It was previously demonstrated that L. rubellus from mine soils were more arsenate resistant than from the uncontaminated site and we wished to investigate if arsenic speciation had a role in this resistance. Earthworms from contaminated sites had considerably higher arsenic body burdens (maximum 1,358 mg As kg-1) compared to the uncontaminated site (maximum 13 mg As kg-1). The only organo-arsenic species found in methanol/water extracts for all earthworm populations was arsenobetaine, quantified using both HPLC-MS and HPLC-ICP-MS. Arsenobetaine concentrations were high in L. rubellus from the uncontaminated site when concentrations were expressed as a percentage of the total arsenic burden (23% mean), but earthworms from the contaminated sites with relatively low arsenic burdens also had these high levels of arsenobetaine (17% mean). As arsenic body burden increased, the percentage of arsenobetaine present decreased in a dose dependent manner, although its absolute concentration rose with increasing arsenic burden. The origin of this arsenobetaine is discussed. XAS analysis of arsenic mine L. rubellus showed that arsenic was primarily present as As(III) co-ordinated with sulfur (30% approx.), with some As(v) with oxygen (5%). Spectra for As(III) complexed with glutathione gave a very good fit to the spectra obtained for the earthworms, suggesting a role for sulfur co-ordination in arsenic metabolism at higher earthworm arsenic burdens. It is also possible that the disintegration of As(III)-S complexes may have taken place due to (a) processing of the sample, (b) storage of the extract or (c) HPLC anion exchange. HPLC-ICP-MS analysis of methanol extracts showed the presence of arsenite and arsenate, suggesting that these sulfur complexes disintegrate on extraction. The role of arsenic speciation in the resistance of L. rubellus to arsenate is considered.
Resumo:
The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.