26 resultados para HETEROGENEOUS CATALYST
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
An attempt is made to immobilize the homogeneous metal chloride/EMIMCl catalyst for glucose dehydration to 5-hydroxymethylfurfural. To this end, ionic liquid fragments were grafted to the surface of SBA-15 to generate a heterogenized mimick of the homogeneous reaction medium. Despite a decrease in the surface area, the ordered mesoporous structure of SBA-15 was largely retained. Metal chlorides dispersed in such ionic liquid film are able to convert glucose to HMF with much higher yields as is possible in the aqueous phase. The reactivity order CrCl > AlCl > CuCl > FeCl is similar to the order in the ionic liquid solvent, yet the selectivity are lower. The HMF yield of the most promising CrCl-Im-SBA-15 can be improved by using a HO:DMSO mixture as the reaction medium and a 2-butanol/MIBK extraction layer. Different attempts to decrease metal chloride leaching by using different solvents are described. © 2013 American Institute of Chemical Engineers Environ Prog.
Resumo:
The asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methylpyruvate and 1-phenyl-1-trimethylsilyloxyethene have been catalysed by heterogeneous copper(II)-bis(oxazoline)-based polymer immobilised ionic liquid phase (PIILP) systems generated from a range of linear and cross linked ionic polymers. In both reactions selectivity and ee were strongly influenced by the choice of polymer. A comparison of the performance of a range of Cu(II)-bis(oxazoline)-PIILP catalyst systems against analogous supported ionic liquid phase (SILP) heterogeneous catalysts as well as their homogeneous counterparts has been undertaken and their relative merits evaluated.
Resumo:
A series of cis-dihydrodiol metabolites, available from the bacterial dioxygenase-catalysed oxidation of monosubstituted benzene substrates using Pseudomonas putida UV4, have been converted to the corresponding catechols using both a heterogeneous catalyst (Pd/C) and a naphthalene cis-diol dehydrogenase enzyme present in whole cells of the recombinant strain Escherichia coli DH5 alpha(pUC129: nar B). A comparative study of the merits of both routes to 3-substituted catechols has been carried out and the two methods have been found to be complementary. A similarity in mechanism for catechol formation under both enzymatic and chemoenzymatic conditions, involving regioselective oxidation of the hydroxyl group at C-1, has been found using deuterium labelled toluene cis-dihydrodiols. The potential, of combining a biocatalytic step (dioxygenase-catalysed cis-dihydroxylation) with a chemocatalytic step (Pd/C-catalysed dehydrogenation), into a one-pot route to catechols, from the parent substituted benzene substrates, has been realised.
Resumo:
The Heck arylation of 2-methylprop-2-en- I -ol in ionic liquids and organic solvents is reported using a range of homogeneous and heterogeneous palladium catalysts. Higher activity is observed in the ionic liquid media compared with N-methyl pyrrolidinone and under solventless conditions. The ionic liquid-catalyst system may be recycled easily with little loss in activity, although significant palladium leaching from the heterogeneous catalyst was observed. In the case of Trans-bis(2,3-dihydro-3-methylbenzothiazole-2-ylidene)diiodopalladium (11) reported to be highly active for this transformation, significant induction petiods were observed indicating that nanoparticles may be responsible for the catalysis. Using the ionic liquid Heck reaction, a recyclable synthesis for the fragrance beta-Lilial((R)) has been developed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The immobilization of a ruthenium complex (Ru2Cl4(az-tpy)2) within a range of supported ionic liquids ([C4C1im]Cl, [C4C1im][NTf2], [C6C1im]Cl, [C4C1pyrr]Br, [C4C1im]Br, [C4C1pyrr]Cl) dispersed silica (SILP) operates as an efficient heterogeneous catalyst in oxidation of long chain linear primary amines to corresponding nitriles. This reaction follows a “green” route using a cheap and easy to handles oxidant (oxygen or air). The conversion was found to be strongly influenced by the alkyl chain length of the amine substrate and the choice of oxidant. No condensation reaction was observed between the starting amines and the selectivity to nitrile is 100%. Moving from a composition of 20 atm N2/5 atm O2 to 5 atm N2/20 atm O2 led to enhancements in the conversion (n-alkylamines) and selectivity (benzonitrile) which have been correlated with an increase of the solubilized oxygen. This was further supported by using different inert gas (nitrogen, helium, argon)/oxygen mixtures indicating that the O2 solubility in the SILP system, has an important effect on conversions and TON in this reaction using SILP catalysts. Experiments performed in the presence of CO2 led to a different behaviour due to the formation of amine-CO2 adducts. The application of the Weisz–Prater criterion confirmed the absence of any diffusional constraints.
Resumo:
The preparation of porous films directly deposited onto the surface of catalyst particles is attracting increasing attention. We report here for the first time a method that can be carried out at ambient pressure for the preparation of porous films deposited over 3 mm diameter catalyst particles of silica-supported Pt-Fe. Characterization of the sample prepared at ambient pressure (i.e., open air, OA) and its main structural differences as compared with a Na-A (LTA) coated catalyst made using an autoclave-based method are presented. The OA-coated material predominantly exhibited an amorphous film over the catalyst surface with between 4 and 13% of crystallinity as compared with fully crystallized LTA zeolite crystals. This coated sample was highly selective for CO oxidation in the presence of butane with no butane oxidation observed up to 350 degrees C. This indicates, for the first time, that the presence of a crystalline membrane is not necessary for the difference in light off temperature between CO and butane to be achieved and that amorphous films may also produce this effect. An examination of the space velocity dependence and adsorption of Na+ on the catalysts indicates that the variation in CO and butane oxidation activity is not caused by site blocking predominantly, although the Pt activity was lowered by contact with this alkali.
Resumo:
The fundamental understanding of the activity in heterogeneous catalysis has long been the major subject in chemistry. This paper shows the development of a two-step model to understand this activity. Using the theory of chemical potential kinetics with Bronsted-Evans-Polanyi relations, the general adsorption energy window is determined from volcano curves, using which the best catalysts can be searched. Significant insights into the reasons for catalytic activity are obtained.
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.
Resumo:
Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.
Resumo:
Methane activation is a crucial step in the conversion of methane to valuable oxygenated products. In heterogeneous catalysis, however, methane activation often leads to complete dissociation: If a catalyst can activate the first C-H bond in CH4, it can often break the remaining C-H bonds. In this study, using density functional theory, we illustrate that single C-H bond activation in CH4 is possible. We choose a model system which consists of isolated Pt atoms on a MoO3(010) surface. We find that the Pt atoms on this surface can readily activate the first C-H bond in methane. The reaction barrier of only 0.3 eV obtained in this study is significantly lower than that on a Pt(111) surface. We also find, in contrast to the processes on pure metal surfaces, that the further dehydrogenation of methyl (CH3) is very energetically unfavorable on the MoO3-supported Pt catalyst. (C) 2002 American Institute of Physics.
Resumo:
This paper discusses a number of checks that should be carried out to ensure that the kinetic and spectroscopic measurements made using a DRIFTS cell are meaningful. The observations reported here demonstrate how an appropriately modified commercial DRIFTS cell can provide pertinent kinetic information about both gaseous products and the related surface intermediates. The oxidation of CO with 02 was used as a test to assess the catalyst bed bypass by the reaction mixture. Full CO conversion was obtained after the light-off temperature in the case of the modified cell, contrary to the case of the original cell, for which 80% of the reaction mixture bypassed the catalyst bed. The water-gas shift reaction over a Pt/CeO2 catalyst was used as a model reaction to further characterize the behavior of the cell under reaction conditions. The catalyst bed was shown not to be a dead-zone and was purged in essentially the same time as that needed to purge the cell. The reaction chamber globally operated in a quasi plug-flow mode and the gas composition in the thin catalyst bed appears to be homogeneous when operated under differential conditions. The production of the gas-phase reaction product CO2 could be simultaneously followed both by mass spectrometry and DRIFTS, both techniques leading to identical results. Various IR bands integration methods were discussed to allow a precise and accurate determination of the surface concentration of adsorbates during isotopic exchange. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Molecular hydrogenation catalysts have been co-entrapped with the ionic liquid [Bmim]NTf(2) inside a silica matrix by a sot-gel method. These catalytic ionogels have been compared to simple catalyst-doped glasses, the parent homogeneous catalysts, commercial heterogeneous catalysts, and Rh-doped mesoporous silica. The most active ionogel has been characterised by transmission electron microscopy, X-ray photoelectron spectroscopy, and solid state NMR before and after catalysis. The ionogel catalysts were found to be remarkably active, recyclable and resistant to chemical change.
Resumo:
The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved