8 resultados para HAMILTONIAN-SYSTEMS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law. © 2011 American Physical Society.
Resumo:
Numerical sound synthesis is often carried out using the finite difference time domain method. In order to analyse the stability of the derived models, energy methods can be used for both linear and nonlinear settings. For Hamiltonian systems the existence of a conserved numerical energy-like quantity can be used to guarantee the stability of the simulations. In this paper it is shown how to derive similar discrete conservation laws in cases where energy is dissipated due to friction or in the presence of an energy source due to an external force. A damped harmonic oscillator (for which an analytic solution is available) is used to present the proposed methodology. After showing how to arrive at a conserved quantity, the simulation of a nonlinear single reed shows an example of an application in the context of musical acoustics.
Resumo:
Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
We provide an extensive discussion on a scheme for Hamiltonian tomography of a spin-chain model that does not require state initialization [Phys. Rev. Lett. 102 ( 2009) 187203]. The method has spurred the attention of the physics community interested in indirect acquisition of information on the dynamics of quantum many-body systems and represents a genuine instance of a control-limited quantum protocol.
Resumo:
The evolution of a two level system with a slowly varying Hamiltonian, modeled as a spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.
Resumo:
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.