38 resultados para Growth mechanism

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative approach is used to understand the chain growth mechanism in FT synthesis on the Ru, Fe, Rh, and Re surfaces. The C-C coupling reactions are extensively calculated on the stepped metal surfaces. Combining the coupling barriers and reactant stabilities, we investigate the reaction rates of all possible C, + C-1 coupling pathways on the metal surfaces. It is found that (i) all the transition-state structures are similar on these surfaces, while some coupling barriers are very different; (ii) the dominant chain growth pathways on these surfaces are different: C + CH and CH + CH on Rh and Ru surfaces, C + CH3 on Fe surface, and C + CH on Re surface. The common features of the major coupling reactions together with those on the Co surface are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The initial growth mechanism of epitaxial BaTiO3 films is studied by combined application of atomic force microscopy, cross sectional high-resolution transmission electron microscopy, and x-ray diffraction. Epitaxial BaTiO3 thin films were grown by pulsed laser deposition on vicinal Nb-doped SrTiO3 (SrTiO3:Nb) (001) substrates with well-defined terraces. X-ray diffraction and cross sectional high-resolution transmission electron microscopy investigations revealed well-defined epitaxial films and a sharp interface between BaTiO3 films and SrTiO3:Nb substrates. The layer-then-island (Stranski-Krastanov mode) growth mechanism observed by analyzing the morphology of a sequence of films with increasing amount of deposited material has been confirmed by microstructure investigations. (C) 2002 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The growth mechanism of epitaxial BaTiO3 films on vicinal Nb-doped SrTiO3 (srTiO(3):Nb) (001) substrate surfaces was studied in terms of surface morphology, crystalline orientation, microstructure, and film/substrate interface. Well-oriented BaTiO3 thin films were grown on SrTiO3 substrates with well-defined terraces by pulsed laser deposition. The regularly terraced TiO2-terminated surfaces of vicinal SrTiO3:Nb (001) substrates were prepared by a definite chemical and thermal treatment. Under our conditions, BaTiO3 seems to grow with a layer-then-island (Stranski-Krastanov) growth mechanism. In order to investigate the orientation and crystallinity of the BaTiO3 films, x-ray diffraction and high-resolution transmission election microscopy were performed. Ferroelectricity of the BaTiO3 films was proved by electrical measurements performed on Pt/BaTiO3/SrTiO3:Nb heterostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We invoke the onset of dislocations along the BaTiO3-SrTiO3 interface as reported by Wunderlich et al. to explain the non-monotonic behaviour of the dielectric permittivity as a function of superlattice periodicity and the less than four-fold in-plane symmetry at the dielectric maximum. At a periodicity of about 10/10, depending on composition and growth mechanism, several groups report a maximum of dielectric permittivity. In addition to that we observe in-plane symmetry less than tetragonal for 10/10 superlattices by HR-XRD, in contrast to initial low-resolution data from Tabata et al. thus challenging the assumption of unrelaxed strain all the way through the superlattice. The aim of this article is to link both effects to the increasing volume fraction of conducting layers close to the interface in series with the superlattice layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of epitaxial BaTiO3/SrTiO3 multilayers; is studied in terms of the growth mechanism by investigating surface morphologies, crystalline orientations, microstructures, and structures of the interfaces, as well as by determining the dielectric properties. Under specific conditions, the epitaxial BaTiO3 films follow a layer-then-island (Stranski-Krastanov) mechanism on SrTiO3 (001)-oriented substrates. In view of actual efforts made to grow epitaxial superlattices involving very thin individual layers of BaTiO3 and/or SrTiO3, we have determined that the BaTiO3 films Of up to 6,nm thickness do not show any defects and have a sharp BaTiO3-on-SrTiO3 interface. On the contrary, SrTiO3-on-BaTiO3 interfaces within multilayers are rough, probably due to the different growth mechanisms of the two different materials, or due to a difference in the morphological stability of the growth surfaces caused by different surface energies of BaTiO3 and SrTiO3 and by different mobilities of the Ba and Sr atoms reaching the SrTi3 and BaTiO3 layers, respectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The aim of the investigation was to use in vitro transposon mutagenesis to generate metronidazole resistance in the obligately anaerobic pathogenic bacterium Bacteroides thetaiotaomicron, and to identify the genes involved to enable investigation of potential mechanisms for the generation of metronidazole resistance.
Methods: The genes affected by the transposon insertion were identified by plasmid rescue and sequencing. Expression levels of the relevant genes were determined by semi-quantitative RNA hybridization and catabolic activity by lactate dehydrogenase/pyruvate oxidoreductase assays.
Results: A metronidazole-resistant mutant was isolated and the transposon insertion site was identified in an intergenic region between the rhaO and rhaR genes of the gene cluster involved in the uptake and catabolism of rhamnose. Metronidazole resistance was observed during growth in defined medium containing either rhamnose or glucose. The metronidazole-resistant mutant showed improved growth in the presence of rhamnose as compared with the wild-type parent. There was increased transcription of all genes of the rhamnose gene cluster in the presence of rhamnose and glucose, likely due to the transposon providing an additional promoter for the rhaR gene, encoding the positive transcriptional regulator of the rhamnose operon. The B. thetaiotaomicron metronidazole resistance phenotype was recreated by overexpressing the rhaR gene in the B. thetaiotaomicron wild-type parent. Both the metronidazole-resistant transposon mutant and RhaR overexpression strains displayed a phenotype of higher lactate dehydrogenase and lower pyruvate oxidoreductase activity in comparison with the parent strain during growth in rhamnose.
Conclusions: These data indicate that overexpression of the rhaR gene generates metronidazole resistance in B. thetaiotaomicron

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.