3 resultados para Green-scale

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rp/16 sequence data using a conventional nucleotide substitution model (GTR + Gamma + I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because out-group rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of mu m-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical,spectrographic, microbiological and hydrogeologic studies at the ORIFRC site indicate that groundwater transport in structured media may behave as a system of parallel flow tubes. These tubes are preferred flowpaths that enable contaminant transport parallel to bedding planes (strike) over distances of 1000s of meters. A significant flux of groundwater is focused within an interval defined by the interface between the competent bedrock and overlying highly-weathered saprolite, commonly referred to as the"transition zone." Characteristics of this transition zone are dense fractures and the relative absence of weathering products (e.g. clays)results in a significantly higher permeability compared to both the overlying clay-saprolite and underlying bedrock. Several stratabound low seismic velocity zones located below the transition zone were identified during geophysics studies and were also determined to be fractured high permeability preferred contaminant transport pathways during subsequent drilling activities. XANES analysis of precipitates collected from these deeper flow zones indicate 95% or more of the U deposited is U(VI). Linear combination fitting of the EXAFS data shows that precipitates are ~51±5% U(VI)-carbonate-like phase (e.g., liebigite) and ~49±5% U(VI) associated with an iron oxide phase; inclusion of a third component in the fit suggests that up to 15% of the U(VI) may be associated with a phosphate phase or OH- phase (e.g.,schoepite). Although precipitates with similar U(VI)-carbonate and/or phosphate associations were identified in the transition zone pathways,there were also U(VI) complexes adsorbed to mineral surfaces that would tend to be more readily mobilized. Groundwater in the different flow tubes has been determined to consist of different water quality types that vary with the solid phase encountered (e.g., clays, carbonates, clastics) as contaminants migrate along the flow paths. This lateral and vertical variability in geochemistry, particularly pH, has a significant impact on microbiological community composition and activity. Ribosomal RNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter(a diverse population of denitrifiers that are moderately acid tolerant) have a high relative abundance in the acidic source zone at the ORIFRC site.Watershed-scale analysis across different flow paths/tubes revealed strong negative correlation between pH and the absolute and relative abundance of Rhodanobacter. Recent studies also confirmed that the ORIFRC site hosts a diverse fungal community, with significant differences observed between acidic (pH <5) and circumneutral (>5) wells. The lack of nitrous oxide reduction capability in fungi, and the detection of denitrification potential in slurry microcosms suggest that fungi may have aheretofore under appreciated role in biogeochemical transformations, with implications forsite remediation and greenhouse gas emissions. Further research is needed to determine if these organisms can influence U(VI) mobility either directly through immobilization or indirectly through the depletion of nitrate.In conclusion, additional studies are required to quantify the processes (e.g., solid phase reactions, recharge, diffusion, microbial interactions) that are occurring along the groundwater flow tubes identified at the ORIFRC so predictive models can be parameterized and used to assess long-term contaminant fate and transport and remedial options.