24 resultados para Gold mines and mining

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative study of the voltammetry of H[NTf2], HCl and H[AuCl4] in [C(4)mim][NTf2] has provided an insight into the influence of protons on the reduction of [AuCl4](-) at Au, Pt or glassy carbon (GC) electrodes, and has allowed the identification of an unprecedented proton-induced electroless deposition of Au on relatively inert GC surfaces. For the first time, clear evidence of the quantitative formation of [HCl2](-) has been obtained in HCl/[C(4)mim][NTf2] mixtures, and the electrochemical behavior of these mixtures analyzed. In particular, a significant shift of the dissociation equilibrium toward the formation of chloride and the solvated proton (H-IL(+)), following electrochemical reduction of H-IL(+) has been observed in the time-scale of the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sandwich immunoassay for PSA/ACT complex detection based on gold nanoparticle aggregation using two probes was developed. The functionalized colloidal gold nanoparticles (AuNPs) showed highly stable not only in the presence of high ionic strength but also in a wide pH range. The functionalized AuNPs were tagged with PSA/ACT complex monoclonal antibody and goat PSA polyclonal antibody and served as the probes to induce aggregation of the colloidal particles. As a result, PSA/ACT complex was detected at concentrations as low as 1 ng/ml. This is the first time that a new aggregation sandwich-immunoassay technique using two gold probes has been used, and the results are generally applicable to other LSPR-based immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.

Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.

Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of gold nanoparticles (AuNPs) with chromium-substituted hydrotalcite (Cr-HT) supports makes very efficient heterogeneous catalysts (Au/Cr-HT) for aerobic alcohol oxidation under soluble-base-free conditions. The Au-support synergy increases with increasing Cr content of the support and decreasing AuNP size. In situ UV-Raman, X-ray absorption and photoelectron spectroscopic studies firmly establish that the strong Au-Cr synergy is related to a Cr ↔ Cr redox cycle at the Au/Cr-HT interface, where O activation takes place accompanied by electron transfer from Cr-HT to Au. The interfacial Cr species can be reduced by surface Au-H hydride and negative-charged Au species to close the catalytic cycle. A study of kinetic isotope effect indicates that alcohol O-H cleavage is facilitated by the presence of Cr, making a-C-H bond cleavage step more rate-controlling. Accordingly, a dual synergistic effect of Au/Cr-HT catalysts on the activation of O2 and alcohol reactants is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, the electrochemistry of gold has been studied in detail in a 'second-generation', non-haloaluminate, ionic liquid. In particular, the electrochemical behaviour of Na[AuCl4] has been investigated in 1-butyl-3-methylimidazolium bis{(tifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], over gold, platinum and glassy carbon working electrodes. The reduction of [AuCl4](-) initially forms [AuCl2](-) before deposition on the electrode as Au(0). To enable stripping of deposited gold or electrodissolution of bulk gold, the presence of chloride, trichloride or chlorine is required. Specifically trichloride and chlorine have been identified as the active species which preferentially form Au(I) and Au(III), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arcellininids (testate amoebae) were examined from 61 surface sediment samples collected from 59 lakes in the vicinity of former gold mines, notably Giant Mine, near Yellowknife, Northwest Territories, Canada to determine their utility as bioindicators of arsenic (As), which occurs both as a byproduct of gold extraction at mines in the area and ore-bearing outcrops. Cluster analysis (Q-R-mode) and detrended correspondence analysis (DCA) reveal five arcellininid assemblages, three of which are related to varying As concentrations in the sediment samples. Redundancy analysis (RDA) showed that 14 statistically significant environmental parameters explained 57 % of the variation in faunal distribution, while partial RDA indicated that As had the greatest influence on assemblage variance (10.7 %; p < 0.10). Stress-indicating species (primarily centropyxids) characterized the faunas of samples with high As concentrations (median = 121.7 ppm, max > 10000 ppm, min = 16.1 ppm, n = 32), while difflugiid dominated assemblages were prevalent in substrates with relatively low As concentrations (median = 30.2 ppm, max = 905.2 ppm, min = 6.3 ppm, n = 20). Most of the lakes with very high As levels are located downwind (N and W) of the former Giant Mine roaster stack where refractory ore was roasted and substantial quantities of As were released (as As2O3) to the atmosphere in the first decade of mining. This spatial pattern suggests that a significant proportion of the observed As, in at least these lakes, are industrially derived. The results of this study highlight the sensitivity of Arcellinina to As and confirm that the group has considerable potential for assessing the impact of As contamination on lakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results are presented for simulations of electron-positron pair production in relativistic heavy-ion collisions leading to electron capture and positron ejection. We apply a two-center relativistic continuum distorted-wave model to represent the electron or positron dynamics during the collision process. The results are compared with experimental cross-section data for La57+ and Au79+ impact on gold, silver, and copper targets. The theory is in good agreement with experiment for La57+ impact, verifying the result that the process increases in importance with both collision energy and target atomic number, and improves upon previous simulations of this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen is reported in four room temperature ionic liquids (RTILs) based on quaternary alkyl -onium cations and heavily fluorinated anions in which the central atom is either nitrogen or phosphorus. Data were collected using cyclic voltammetry and potential step chronoamperometry at gold, platinum, and glassy carbon disk electrodes of micrometer dimension under water-free conditions at a controlled temperature. Analysis via fitting, to appropriate theoretical equations was then carried out to obtain kinetic and thermodynamic information pertaining to the electrochemical processes observed. In the quaternary ammonium electrolytes, reduction of oxygen was found to occur reversibly to give stable superoxide, in an analogous manner to that seen in conventional aprotic solvents such as dimethyl sufoxide and acetonitrile. The most significant difference is in the relative rate of diffusion; the diffusion coefficients of oxygen in the RTILs are an order of magnitude lower than in common organic solvents, and for superoxide these values are reduced by a further factor of 10. In the quaternary phosphonium ionic liquids, however, more complex voltammetry is observed, akin to that expected for the reduction of oxygen in acidified organic media. This is shown to be consistent with the occurrence of a proton abstraction reaction between the electrogenerated superoxide and quaternary alkyl phosphonium cations following the initial electron transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001