129 resultados para Goal Profile
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.
The geochemical data, and particularly the immobile elements distribution and REE patterns, show that the Balkouin laterite is the product of an in situ lateritization process that involved a strong depletion of the more soluble elements (K, Mg, Ca, Na, Rb, Sr and Ba) and an enrichment in Fe; Si was also removed, particularly in the uppermost horizons. All along the profile the change in composition is coupled with important changes in mineralogy. In particular, the saprolite is characterized by occurrence of abundant albitic plagioclase, quartz and nontronite; kaolinite is apparently absent. The transition to the overlying lateritic profile marks the breakdown of plagioclase and nontronite, thus allowing kaolinite to become one of the major components upwards, together with goethite and quartz. The upper part of the profile is strongly enriched in hematite (+ kaolinite). Ti oxides (at least in part as anatase) and apatite are typical accessory phases, while free aluminum hydroxides are notably absent. Mass change calculations emphasize the extent of the mass loss, which exceeds 50 wt% (and often 70 wt%) for almost all horizons; only Fe was significantly concentrated in the residual system.
The geochemical and mineralogical features suggest that the lateritic profile is the product of a continuous process that gradually developed from the bedrock upwards, in agreement with the Schellmann classic genetic model. The laterite formation must have occurred at low pH (? 4.5) and high Eh (? 0.4) values, i.e., under acidic and oxidizing environments, which allowed strongly selective leaching conditions. The lack of gibbsite and bohemite is in agreement with the compositional data: the occurrence of quartz (± amorphous silica) all along the profile was an inhibiting factor for the formation of free aluminum hydroxides.
Resumo:
Denver has emerged from the 1990s as a city region experiencing rapid growth. This has been fuelled by a vibrant local economy, which has adjusted itself from dependency on an earlier oil boom to greater reliance on the information and communications technology sector. The current planning and development challenges are dominated by the need to deal with urban sprawl and pressured transportation infrastructure. The contemporary restructuring of the physical fabric of Denver is marked by a progressive downtown revitalisation effort and a number of space extensive brownfield development projects. The interplay of state and local governments with commercial interests and citizens is a powerful dynamic in shaping these negative and positive outcomes.
Resumo:
We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.
Resumo:
Novel technology dependent scaling parameters i.e. spacer to gradient ratio and effective channel length (Leff) are proposed for source/drain engineered DG MOSFET, and their significance in minimizing short channel effects (SCES) in high-k gate dielectrics is discussed in detail. Results show that a high-k dielectric should be associated with a higher spacer to gradient ratio to minimise SCEs The analytical model agrees with simulated data over the entire range of spacer widths, doping gradients, high-k gate dielectrics and effective channel lengths.
Resumo:
The long-term impact of dietary carbohydrate type, in particular sucrose, on insulin resistance and the development of diabetes and atherosclerosis is not established. Current guidelines for the healthy population advise restriction of sucrose intake. We investigated the effect of high- versus low-sucrose diet (25 vs. 10%, respectively, of total energy intake) in 13 healthy subjects aged 33 +/- 3 years (mean +/- SE), BMI 26.6 +/- 0.9 kg/m(2), in a randomized crossover design with sequential 6-week dietary interventions separated by a 4-week washout. Weight maintenance, eucaloric diets with identical macronutrient profiles and fiber content were designed. All food was weighed and distributed. Insulin action was assessed using a two-step euglycemic clamp; glycemic profiles were assessed by the continuous glucose monitoring system and vascular compliance by pulse-wave analysis. There was no change in weight across the study. Peripheral glucose uptake and suppression of endogenous glucose production were similar after each diet. Glycemic profiles and measures of vascular compliance did not change. A rise in total and LDL cholesterol was observed. In this study, a high-sucrose intake as part of an eucaloric, weight-maintaining diet had no detrimental effect on insulin sensitivity, glycemic profiles, or measures of vascular compliance in healthy nondiabetic subjects.
Resumo:
Ab initio nonlocal pseudopotential variational quantum Monte Carlo techniques are used to compute the correlation effects on the valence momentum density and Compton profile of silicon. Our results for this case are in excellent agreement with the Lam-Platzman correction computed within the local density approximation. Within the approximations used, we rule out valence electron correlations as the dominant source of discrepancies between calculated and measured Compton profiles of silicon.