201 resultados para Glucose-transporter Isoforms

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malignant tumors metabolize glucose to lactate even in the presence of oxygen (aerobic glycolysis). The metabolic switch from oxidative glycolysis to non-oxidative fermentation of glucose and proteins performed by the tumor cells seems to be associated with TKTL1 and pAkt overexpression. Therefore the aim of the present study was to investigate the expression of TKTL1 and pAkt in human specimens of endometrial cancer as compared to benign endometrium. Additionally, expression of the glucose transporter GLUT1 was also investigated as aerobic glycolysis is associated with an increased need for glucose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atheroma formation involves the movement of vascular smooth muscle cells (VSMC) into the subendothelial space. The aim of this study was to determine the involvement of PI3K and MAPK pathways and the importance of cross-talk between these pathways, in glucose-potentiated VSMC chemotaxis to serum factors. VSMC chemotaxis occurred in a serum gradient in 25 mmol/L glucose (but not in 5 mmol/L glucose) in association with increased phosphorylation (activation) of Akt and ERK1/2 in PI3K and MAPK pathways, respectively. Inhibitors of these pathways blocked chemotaxis, as did an mTOR inhibitor. VSMC expressed all class IA PI3K isoforms, but microinjection experiments demonstrated that only the p110beta isoform was involved in chemotaxis. ERK1/2 phosphorylation was reduced not only by MAPK pathway inhibitors but also by PI3K and mTOR inhibitors; when PI3K was inhibited, ERK phosphorylation could be induced by microinjected activated Akt, indicating important cross-talk between the PI3K and ERK1/2 pathways. Glucose-potentiated phosphorylation of molecules in the p38 and JNK MAPK pathways inhibited these pathways but did not affect chemotaxis. The statin, mevinolin, blocked chemotaxis through its effects on the MAPK pathway. Mevinolin-inhibited chemotaxis was restored by farnesylpyrophosphate but not by geranylgeranylpyrophosphate; in the absence of mevinolin, inhibition of farnesyltransferase reduced ERK phosphorylation and blocked chemotaxis, indicating a role for the Ras family of GTPases (MAPK pathway) under these conditions. In conclusion, glucose sensitizes VSMC to serum, inducing chemotaxis via pathways involving p110beta-PI3K, Akt, mTOR, and ERK1/2 MAPK. Cross-talk between the PI3K and MAPK pathways is necessary for VSMC chemotaxis under these conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoinositide 3-kinases produce 3'-phosphorylated phosphoinositides that act as second messengers to recruit other signalling proteins to the membrane(1). Pi3ks are activated by many extracellular stimuli and have been implicated in a variety of cellular responses(1). The Pi3k gene family is complex and the physiological roles of different classes and isoforms are not clear. The gene Pik3r1 encodes three proteins (p85 alpha, p55 alpha and p50 alpha) that serve as regulatory subunits of class I-A Pi3ks (ref. 2). Mice lacking only the p85a isoform are viable but display hypoglycaemia and increased insulin sensitivity correlating with upregulation of the p55 alpha and p50 alpha variants(3). Here we report that loss of all protein products of Pik3r1 results in perinatal lethality. We observed, among other abnormalities, extensive hepatocyte necrosis and chylous ascites, We also noted enlarged skeletal muscle fibres, brown fat necrosis and calcification of cardiac tissue. In liver and muscle, loss of the major regulatory isoform caused a great decrease in expression and activity of class I-A Pi3k catalytic subunits: nevertheless, homozygous mice still displayed hypoglycaemia, lower insulin levels and increased glucose tolerance. Our findings reveal that p55 alpha and/or p50 alpha are required for survival, but not for development of hypoglycaemia, in mice lacking p85 alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background— Depression is a risk factor for myocardial infarction (MI). Selective serotonin reuptake inhibitors reduce this risk. The site of action is the serotonin transporter (SLC6A4), which is expressed in brain and blood cells. A functional polymorphism in the promoter region of the SLC6A4 gene has been described. This polymorphism may be associated with the risk of MI. Methods and Results— The SLC6A4 polymorphism has been investigated by polymerase chain reaction in 671 male patients with MI and in 688 controls from the Etude Cas-Témoins de l’Infarctus du Myocarde (ECTIM) multicentric study. Percentages for LL, LS, and SS genotypes were 35.5%, 45.4%, and 19.1%, respectively, for cases versus 28.1%, 49.1%, and 22.8%, respectively, for controls. S allele frequency was 41.8% and 47.4% for cases and controls, respectively. After adjustment for age and center by using multivariable logistic regression, the odds ratio for MI associated with the LL genotype was 1.40 (95% CI 1.11 to 1.76, P=0.0047). Conclusions— The LL genotype of the SLC6A4 polymorphism is associated with a higher risk of MI. This could be attributable to the effect of the polymorphism on serotonin-mediated platelet activation or smooth muscle cell proliferation or on other risk factors, such as depression or response to stress

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(LyS(37)PAL) and N-AcGIP(LyS(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25 nmol kg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(LyS(37)PAL) or N-AcGIP(LyS37PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a physiological insulin releasing peptide. We have developed two novel fatty acid derivatized GIP analogues, which bind to serum albumin and demonstrate enhanced duration of action in vivo. GIP(Lys(16)PAL) and GIP(Lys(37)PAL) were resistant to dipeptidyl peptidase IV (DPP IV) degradation. In vitro studies demonstrated that GIP analogues retained their ability to activate the GIP receptor through production of cAMP and to stimulate insulin secretion. Intraperitoneal administration of GIP analogues to obese diabetic (ob/ob) mice significantly decreased the glycemic excursion and elicited increased and prolonged insulin responses compared to native GIP. A protracted glucose-lowering effect was observed 24 h following GIP(LyS(37)PAL) administration. Once a day injection for 14 days decreased nonfasting glucose, improved glucose tolerance, and enhanced the insulin response to glucose. These data demonstrate that fatty acid derivatized GIP peptides represent a novel class of long-acting stable GIP analogues for therapy of type 2 diabetes.