8 resultados para Germ Cells

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.

OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.

DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.

MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.

RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.

CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.

OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.

SETTING: This study was conducted at the University of Edinburgh.

PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.

DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.

RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.

CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of intracytoplasmic sperm injection (ICSI) has led to an inappropriate decrease in interest in male fertility. It is apparent that light microscopy provides limited information and molecular techniques show that DNA abnormalities need to be considered further. Abnormalities include not only Yq11 deletions but also DNA strand breaks. Increases in advanced glycation end-products in sperm from well controlled diabetics may provide a mechanism for this damage in non-diabetics. In addition, much publicity is given to decreased male fertility: this is NOT confirmed as technical variations and differences in study populations make it difficult to draw conclusions. The generation of stem cell derived germ cells provides hope for men without germ cells but this is currently only experimental.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cellular localization of the activin-binding protein, follistatin, in the rat testis has been a matter of some controversy with different investigators claiming that Sertoli cells, Leydig cells or germ cells are the primary cell types containing this protein. The localization of mRNA encoding follistatin was re-examined using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization as well as the distribution of follistatin by immunohistochemistry. The results demonstrate that mRNA encoding follistatin is located in many germ cells including type B spermatogonia, primary spermatocytes with the exception of the late leptotene and early zygotene stages, and spermatids at steps 1 to 11. It is also found in Sertoli cells and endothelial cells but not in Leydig cells. Immunohistochemistry, using two different antisera to follistatin, showed that this protein was localized to spermatogonia, primary spermatocytes at all stages except the zygotene stage, spermatids at all stages and to endothelial cells and Leydig cells in the intratubular regions. The failure to detect mRNA for follistatin in Leydig cells using RT-PCR and in situ hybridization suggests that the immunohistochemical localization in these cells reflects binding of follistatin produced elsewhere. The widespread localization of follistatin, taken together with its capacity to neutralize the actions of activin, may indicate that follistatin modulates a range of testicular actions of activin, many of which remain unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein kinases are important signalling molecules critical for normal cell growth and development. CDK11(p58) is a p34(cdc2) related protein kinase, and plays an important role in normal cell cycle progression. In this study, we mainly characterized the protein expression of CDK11(p58) during postnatal development in mouse testes and examined the cellular localization of CDK11(p58) and cyclinD3, which was associated with CDK11(p58) in mammalian cells. Western blot analysis revealed that CDK11(p58) was present in the early stages of development. It gradually increased and reached a peak in adult testes. The protein expression of CDK11(p58) was further analysed by immunohistochemistry due to its developmentally regulated expression. The variable immunostaining patterns of CDK11(p58) were visualized during different developmental periods and, in adult mouse, different stages of seminiferous tubules. CDK11(p58) expression was detected in proliferating germ cells in the early stages of developing testes. In adult testes, the protein was expressed in pachytene primary spermatocytes from stage VII to XI of spermatogenesis and in postmeiotic spermatids in all stages at different levels. The colocalization of CDK11(p58) and cyclinD3 in the adult testis was revealed by immunofluorescence analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.