133 resultados para Genome Scan

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P-SR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. Molecular Psychiatry (2009) 14, 774-785; doi:10.1038/mp.2008.135; published online 30 December 2008

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our genome scan for schizophrenia genes in 265 Irish pedigrees, marker D5S818 in 5q22 produced the second best result of the first 223 markers tested (P = 0.002). We then tested an additional 13 markers and the evidence suggests the presence of a vulnerability locus for schizophrenia in region 5q22-31. This region appears to be distinct from those chromosome 5 regions studied in two prior reports, but the same as that producing positive results in the report by Wildenauer and colleagues found elsewhere in this issue. The largest pairwise heterogeneity LOD (H-LOD) score was found with marker D5S393 (max 3.04, P = 0.0005), assuming a narrow phenotypic category, and a genetic model with intermediate heterozygotic liability. In marked contrast to the H-LOD scores from our sample with markers from the regions of interest on chromosomes 6p and 8p, expanding the disease definition to include schizophrenia spectrum or nonspectrum disorders produced substantially smaller scores, with a number of markers failing to yield positive values at any recombination fraction. Using multipoint H-LODS, the strongest evidence for linkage occurs under the narrow phenotypic definition and recessive genetic model, with a peak at marker D5S804 (max 3.35, P = 0.0002). Multipoint nonparametric linkage analysis produced a peak in the same location (max z = 2.84, P = 0.002) with the narrow phenotypic definition. This putative vulnerability locus appears to be segregating in 10-25% of the families studied, but this estimate is tentative. Comparison of individual family multipoint H-LOD scores at the regions of interest on chromosomes 6p, 8p and 5q showed that only a minority of families yield high lod scores in two or three regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In our genomic scan of 265 Irish families with schizophrenia, we have thus far generated modest evidence for the presence of vulnerability genes in three chromosomal regions, i.e., 5q21-q31, 6p24-p22, and 8p22-p21. Outside of those regions, of all markers tested to date, D10S674 produced one of the highest pairwise heterogeneity lod (H-LOD) scores, 3.2 (P = 0.0004), when initially tested on a subset of 88 families. We then tested a total of 12 markers across a region of 32 centimorgans in region 10p15-p11 of all 265 families. The strongest evidence for linkage occurred assuming an intermediate phenotypic definition, and a recessive genetic model. The largest pairwise H-LOD score was found with marker D10S2443 (maximum 1.95, P = 0.005). Using multipoint H-LODs, we found a broad peak (maximum 1.91, P = 0.006) extending over the 11 centimorgans from marker D10S674 to marker D10S1426. Multipoint nonparametric linkage analysis produced a much broader peak, but with the maximum in the same location near D10S2443 (maximum z = 1.88, P = 0.03). Based on estimates from the multipoint analysis, this putative vulnerability locus appears to be segregating in 5-15% of the families studied, but this estimate should be viewed with caution. When evaluated in the context of our genome scan results, the evidence suggests the possibility of a fourth vulnerability locus for schizophrenia in these Irish families, in region 10p15-p11.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sex differences in schizophrenia are well known, but their genetic basis has not been identified. We performed a genome-wide association scan for schizophrenia in an Ashkenazi Jewish population using DNA pooling. We found a female-specific association with rs7341475, a SNP in the fourth intron of the reelin ( RELN) gene (p = 2.9 x 10(-5) in women), with a significant gene-sex effect (p = 1.8 x 10(-4)). We studied rs7341475 in four additional populations, totaling 2,274 cases and 4,401 controls. A significant effect was observed only in women, replicating the initial result (p = 2.1 x 10(-3) in women; p = 4.2 x 10(-3) for gene-sex interaction). Based on all populations the estimated relative risk of women carrying the common genotype is 1.58 (p = 8.8 x 10(-7); p = 1.6 x 10(-5) for gene-sex interaction). The female-specific association between RELN and schizophrenia is one of the few examples of a replicated sex-specific genetic association in any disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n = 637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n = 746). A 10-cM multipoint, non-parametric, autosomal genomewide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P = 0.04). Two and four loci yielded nonparametric LOD (NPLs) > 1.0 and > 0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P = 0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We performed a genome-wide association study (GWAS) to identify common risk variants for schizophrenia. METHODS: The discovery scan included 1606 patients and 1794 controls from Ireland, using 6,212,339 directly genotyped or imputed single nucleotide polymorphisms (SNPs). A subset of this sample (270 cases and 860 controls) was subsequently included in the Psychiatric GWAS Consortium-schizophrenia GWAS meta-analysis. RESULTS: One hundred eight SNPs were taken forward for replication in an independent sample of 13,195 cases and 31,021 control subjects. The most significant associations in discovery, corrected for genomic inflation, were (rs204999, p combined = 1.34 × 10(-9) and in combined samples (rs2523722 p combined = 2.88 × 10(-16)) mapped to the major histocompatibility complex (MHC) region. We imputed classical human leukocyte antigen (HLA) alleles at the locus; the most significant finding was with HLA-C*01:02. This association was distinct from the top SNP signal. The HLA alleles DRB1*03:01 and B*08:01 were protective, replicating a previous study. CONCLUSIONS: This study provides further support for involvement of MHC class I molecules in schizophrenia. We found evidence of association with previously reported risk alleles at the TCF4, VRK2, and ZNF804A loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.