3 resultados para Genetic transformation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Several lines of evidence indicate that the adapter molecule p130CAS (crk-associated substrate (CAS)) is required for src-mediated cellular transformation. CAS has been shown to be heavily tyrosine-phosphorylated in src-transformed cells, and genetic variants of src that are deficient in CAS binding are also unable to mediate cellular transformation. In this report, we investigated whether CAS phosphorylation and/or its association with src are required elements of the transformation process. Expression of the carboxy-terminal src binding domain of CAS in Rat 1 fibroblasts expressing a temperature-sensitive allele of v-src inhibited the formation of src-CAS complexes and also inhibited tyrosine phosphorylation of CAS. However, expression of this protein had no effect on morphological transformation, src-mediated actin rearrangements, or anchorage-independent growth of these cells when grown at the src-permissive temperature. Thus, the ability of activated src to mediate cellular transformation is either largely independent of endogenous CAS phosphorylation and/or its association with CAS or, alternatively, the carboxy-terminus of CAS may substitute for endogenous CAS in the process of src-mediated transformation.
Resumo:
The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.
Resumo:
To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.