225 resultados para Genes, p53
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.
Resumo:
Aims: The utility of p53 as a prognostic assay has been elusive. The aims of this study were to describe a novel, reproducible scoring system and assess the relationship between differential p53 immunohistochemistry (IHC) expression patterns, TP53 mutation status and patient outcomes in breast cancer.
Methods and Results: Tissue microarrays were used to study p53 IHC expression patterns: expression was defined as extreme positive (EP), extreme negative (EN), and non-extreme (NE; intermediate patterns). Overall survival (OS) was used to define patient outcome. A representative subgroup (n = 30) showing the various p53 immunophenotypes was analysed for TP53 hotspot mutation status (exons 4-9). Extreme expression of any type occurred in 176 of 288 (61%) cases. As compared with NE expression, EP expression was significantly associated (P = 0.039) with poorer OS. In addition, as compared with NE expression, EN expression was associated (P = 0.059) with poorer OS. Combining cases showing either EP or EN expression better predicted OS than either pattern alone (P = 0.028). This combination immunophenotype was significant in univariate but not multivariate analysis. In subgroup analysis, six substitution exon mutations were detected, all corresponding to extreme IHC phenotypes. Five missense mutations corresponded to EP staining, and the nonsense mutation corresponded to EN staining. No mutations were detected in the NE group.
Conclusions: Patients with extreme p53 IHC expression have a worse OS than those with NE expression. Accounting for EN as well as EP expression improves the prognostic impact. Extreme expression positively correlates with nodal stage and histological grade, and negatively with hormone receptor status. Extreme expression may relate to specific mutational status.
Resumo:
The characterization of complex cellular responses to diverse stimuli can be studied by the use of emerging chip-based technologies.
The p53 pathway is critical to maintaining the integrity of the genome in multicellular organisms. The p53gene is activated in response to DNA damage and encodes a transcription factor [1], which in turn activates genes that arrest cell growth and induce apoptosis, thereby preventing the propagation of genetically damaged cells. It is the most important known tumor suppressor gene: perhaps half of all human neoplasms have mutations in p53, and there is a remarkable concordance between oncogenic mutation and the loss of p53 transcriptional activity [2]. There is also compelling experimental evidence that loss of p53 function (by whatever means) is one of the key oncogenic steps in human cells, along with altered telomerase activity and expression of mutant ras [3]. So far, however, relatively few of the genes regulated by p53 have been identified and it is not even known how many binding sites there are for p53 in the genome, although an estimate based on the incidence of the canonical p53 consensus binding site (four palindromic copies of the sequence 5'-PuPuPuGA/T-3', where Pu is either purine) in a limited region suggests there may be as many as 200 to 300, possibly representing the same number of p53-responsive genes [4]. This makes the p53 response an attractive target for the emerging techniques for global analysis of gene expression, and two recent reports [5,6] illustrate the ways in which these techniques can be used to elucidate the spectrum of genes regulated by this key transcription factor. Vogelstein and colleagues [5] have used serial analysis of gene expression (SAGE) to identify 34 genes that exhibit at least a 10-fold upregulation in response to inducible expression of p53; Tanaka et al. [6] have used differential display to identify p53R2, a homolog of ribonuclease reductase small subunit (R2) as a target gene, thereby for the first time implicating p53 directly in the repair of DNA damage.
Resumo:
We characterized Fas immunoreactivity, functionality and its role in the response to mitomycin-C (MMC) chemotherapy in vitro in cell lines and in vivo in bladder washings from 23 transitional cell carcinoma of the bladder (TCCB) patients, harvested prior to and during MMC intravesical treatment. Having established the importance of functional Fas, we investigated the methylation and exon 9 mutation as mechanisms of Fas silencing in TCCB. For the first time, we report p53 up-regulation in 9/14 and Fas up-regulation in 7/9 TCCB patients during intravesical MMC treatment. Fas immunoreactivity was strong in the TCCB cell line T24 and in 17/20 (85%) tumor samples from patients with advanced TCCB. T24 and HT1376 cells were resistant to MMC and recombinant Fas ligand, whilst RT4 cells were responsive to Fas ligand and MMC. Using RT4 cells as a model, siRNA targeting p53 significantly reduced MMC-induced p53 and Fas up-regulation and stable DN-FADD transfection decreased MMC-induced apoptosis, suggesting that functional Fas enhances chemotherapy responses in a p53-dependent manner. In HT1376 cells, 5-aza-2-deoxycytidine (12 µM) induced Fas immunoreactivity and reversed methylation at CpG site -548 within the Fas promoter. This site was methylated in 13/24 (54%) TCCB patient samples assessed using Methylation-Specific Polymerase Chain Reaction. There was no methylation at either the p53 enhancer region within the first intron or at the SP-1 binding region in the promoter and no mutation within exon 9 in tumor DNA extracted from 38 patients. Methylation at CpG site -548 is a potential target for demethylating drugs.
Resumo:
The fluoropyrimidine 5-Fluorouracil (5-FU) is widely used in the treatment of cancer. To identify novel downstream mediators of tumor cell response to 5-FU, we used DNA microarray technology to identify genes that are transcriptionally activated by 5-FU treatment in the MCF-7 breast cancer cell line. Of 2400 genes analyzed, 619 were up-regulated by >3-fold. Highly up-regulated genes (>6-fold) with signal intensities of >3000 were analyzed by Northern blot. Genes that were consistently found to be up-regulated were spermine/spermidine acetyl transferase (SSAT), annexin II, thymosin-beta-10, chaperonin-10, and MAT-8. Treatment of MCF-7 cells with the antifolate tomudex and DNA-damaging agent oxaliplatin also resulted in up-regulation of each of these targets. The 5-FU-induced activation of MAT-8, thymosin-beta-10, and chaperonin-10 was abrogated by inactivation of p53 in MCF-7 cells, whereas induction of SSAT and annexin II was significantly reduced in the absence of p53. Moreover, each of these genes contained more than one potential p53-binding site, suggesting that p53 may play an important regulatory role in 5-FU-induced expression of these genes. In addition, we found that basal expression levels of SSAT, annexin II, thymosin beta-10, and chaperonin-10 were increased (by approximately 2-3-fold), and MAT-8 expression dramatically increased (by approximately 10-fold) in a 5-FU-resistant colorectal cancer cell line (H630-R10) compared with the parental H630 cell line, suggesting these genes may be useful biomarkers of resistance. These results demonstrate the potential of DNA microarrays to identify novel genes involved in mediating the response of tumor cells to chemotherapy.
Resumo:
Ovarian cancer is the fifth leading cause of cancer death among US women. Evidence supports the hypothesis that high-grade serous ovarian cancers (HGSC) may originate in the distal end of the fallopian tube. Although a heterogeneous disease, 96% of HGSC contain mutations in p53. In addition, the "p53 signature," or overexpression of p53 protein (usually associated with mutation), is a potential precursor lesion of fallopian tube derived HGSC suggesting an essential role for p53 mutation in early serous tumorigenesis. To further clarify p53-mutation dependent effects on cells, murine oviductal epithelial cells (MOE) were stably transfected with a construct encoding for the R273H DNA binding domain mutation in p53, the most common mutation in HGSC. Mutation in p53 was not sufficient to transform MOE cells but did significantly increase cell migration. A similar p53 mutation in murine ovarian surface epithelium (MOSE), another potential progenitor cell for serous cancer, was not sufficient to transform the cells nor change migration suggesting tissue specific effects of p53 mutation. Microarray data confirmed expression changes of pro-migratory genes in p53(R273H) MOE compared to parental cells, which could be reversed by suppressing Slug expression. Combining p53(R273H) with KRAS(G12V) activation caused transformation of MOE into high-grade sarcomatoid carcinoma when xenografted into nude mice. Elucidating the specific role of p53(R273H) in the fallopian tube will improve understanding of changes at the earliest stage of transformation. This information can help develop chemopreventative strategies to prevent the accumulation of additional mutations and reverse progression of the "p53 signature" thereby, improving survival rates.
Resumo:
Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.
Resumo:
The Runx genes function as dominant oncogenes that collaborate potently with Myc or loss of p53 to induce lymphoma when over-expressed. Here we examined the requirement for basal Runx1 activity for tumor maintenance in the Eµ-Myc model of Burkitt's lymphoma. While normal Runx1fl/fl lymphoid cells permit mono-allelic deletion, primary Eµ-Myc lymphomas showed selection for retention of both alleles and attempts to enforce deletion in vivo led to compensatory expansion of p53null blasts retaining Runx1. Surprisingly, Runx1 could be excised completely from established Eµ-Myc lymphoma cell lines in vitro without obvious effects on cell phenotype. Established lines lacked functional p53, and were sensitive to death induced by introduction of a temperature-sensitive p53 (Val135) allele. Transcriptome analysis of Runx1-deleted cells revealed a gene signature associated with lymphoid proliferation, survival and differentiation, and included strong de-repression of recombination-activating (Rag) genes, an observation that was mirrored in a panel of human acute leukemias where RUNX1 and RAG1,2 mRNA expression were negatively correlated. Notably, despite their continued growth and tumorigenic potential, Runx1null lymphoma cells displayed impaired proliferation and markedly increased sensitivity to DNA damage and dexamethasone-induced apoptosis, validating Runx1 function as a potential therapeutic target in Myc-driven lymphomas regardless of their p53 status.
Resumo:
The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.