34 resultados para GRAPHENE-CEO2
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The atomic structures of gold supported on (111) and (110) surfaces of CeO2 have been studied using density-functional theory calculations. A single Au atom is placed on three adsorption sites on the surfaces; the stoichiometric surfaces, an oxygen vacancy and a Ce-vacancy. It is found that (i) the Au adsorption energies are in the following order: E-ad(Ce-vacancy) > E-ad(O-vacancy) > E-ad(stoichiometric surface); and (ii) the Au atom adsorption on the Ce-vacancy activates O atoms nearby. One 0 atom is less stable than that in O-2 in the gas phase and another O atom is much easier to remove compared to that of the stoichiometric surfaces. These results suggest that the Au adsorption on Ce-vacancies not only creates an O-vacancy but also activates an O atom nearby. This provides a piece of direct evidence that Au adsorption on a Ce-vacancy may be responsible for some unique catalytic properties of Au/CeO2. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pt-ceria catalysts present different surface chemistries depending on the preparation method and the pretreatment. The catalytic behavior of Pt/CeO2 catalysts in the hydrodechlorination of trichloroethylene (TCE) to ethylene was examined as a function of the pretreatment conditions and the noble metal precursor salts. Using FTIR and X-ray photoelectron spectroscopy, significant differences were observed in the surface properties of Pt/CeO2 prepared from the H2PtCl6 precursor after different pretreatment procedures (i.e.. reduction or oxidation-reduction). These surface changes are related to chloride residues from the synthesis. Strong changes were observed in the selectivity of the catalysts to ethylene depending on the pretreatment conditions. The 0.5%Pt/CeO2 catalyst showed a 13% selectivity toward ethylene after reduction, whereas alter oxidation, followed by reduction, the selectivity increased up to 85% at the same conversion level. This effect was only observed when a chloride-containing precursor was used in the preparation. In this way, it is demonstrated that the use of a Cl-containing Pt precursor and an air treatment prior to reduction strongly improves the ethylene selectivity of Pt-CeO2 dechlorination catalysts. This can be explained by formation or a CeOCl phase during the synthesis that decomposes upon air tempering, producing oxygen vacancies on the ceria support. We propose that these oxygen vacancies are active for cleaving off Cl from the TCE. Pt then supplies II to clean-off Cl as HCl. Reaction of TCE on Pt produces rather ethane, so Pt may be partly Cl-poisoned for the hydrodechlorination reaction but not for II, dissociation or CO adsorption.
Resumo:
Using density functional theory (DFT) and kinetic analyses, a new carboxyl mechanism for the water-gas-shift reaction (WGSR) on Au/CeO2(111) is proposed. Many elementary steps in the WGSR are studied using an Au cluster supported on CeO2(111). It is found that (i) water can readily dissociate at the interface between Au and CeO2; (ii) CO2 can be produced via two steps: adsorbed CO on the Au cluster reacts with active OH on ceria to form the carboxyl (COOH) species and then COOH reacts with OH to release CO2; and (iii) two adsorbed H atoms recombine to form molecular H-2 on the Au cluster. Our kinetic analyses show that the turnover frequency of the carboxyl mechanism is consistent with the experimental one while the rates of redox and formate mechanisms are much slower than that of carboxyl mechanism. It is suggested that the carboxyl pathway is likely to be responsible for WGSR on Au/CeO2.
Resumo:
The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.
Resumo:
In this study, low loading platinum nanoparticles (Pt NPs) have been highly dispersed on reduced graphene oxide-supported WC nanocrystallites (Pt-WC/RGO) via program-controlled reduction-carburization technique and microwave-assisted method. The scanning electron microscopy and transmission electron microscopy results show that WC nanocrystallites are homogeneously decorated on RGO, and Pt NPs with a size of ca. 3 nm are dispersed on both RGO and WC. The prepared Pt-WC/RGO is used as an electrocatalyst for methanol oxidation reaction (MOR). Compared with the Pt/RGO, commercial carbon-supported Pt (Pt/C) and PtRu alloy (PtRu/C) electrocatalysts, the Pt-WC/RGO composites demonstrate higher electrochemical active surface area and excellent electrocatalytic activity toward the methanol oxidation, such as better tolerance toward CO, higher peak current density, lower onset potential and long-term stability, which could be attributed to the characterized RGO support, highly dispersed Pt NPs and WC nanocrystallites and the valid synergistic effect resulted from the increased interface between WC and Pt. The present work proves that Pt-WC/RGO composites could be a promising alternative catalyst for direct methanol fuel cells where WC plays the important role as a functional additive in preparing Pt-based catalysts because of its CO tolerance and lower price.
Resumo:
We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24 h. However, their uptake was ~ 38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.
Graphical abstract
We used O-GNR-PEG-DSPE as a reliable, non-toxic vehicle for delivery of APE-1 inhibiting Lucanthone into GBM tumor cell lines. LUC-O-GNR-PEG-DSPE particles showed 60% or more uptake by CMV/U251 and A1-5/CMV/U251 where as the uptake by MCF7 and normal CG4 glial cells was much lower (38% and 29% respectively). Different concentrations of Luc (5–80 μM) loaded onto O-GNR-PEG-DSPE showed lower toxicity in the exposed cells compared to the free drug, due to possible slow release of the drug from this particle, which ensures minimum non-specific release of the drug from the particle once it is injected in vivo.
http://ars.els-cdn.com/content/image/1-s2.0-S1549963414004249-fx1.jpg