9 resultados para GC-FID

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new Food Information Regulation (1169/2011), dictates that in a refined vegetable oil blend, the type of oil must be clearly identified in the package in contract with current practice where is labelled under the generic and often misleading term “vegetable oil”. With increase consumer awareness in food authenticity, as shown in the recent food scandal with horsemeat in beef products, the identification of the origin of species in food products becomes increasingly relevant. Palm oil is used extensively in food manufacturing and as global demand increases, producing countries suffer from the aftermath of intensive agriculture. Even if only a small portion of global production, sustainable palm oil comes in great demand from consumers and industry. It is therefore of interest to detect the presence of palm oil in food products as consumers have the right to know if it is present in the product or not, mainly from an ethical point of view. Apart from palm oil and its derivatives, rapeseed oil and sunflower oil are also included. With DNA-based methods, the gold standard for the detection of food authenticity and species recognition deemed not suitable in this analytical problem, the focus is inevitably drawn to the chromatographic and spectroscopic methods. Both chromatographic (such as GC-FID and LC-MS) and spectroscopic methods (FT-IR, Raman, NIR) are relevant. Previous attempts have not shown promising results due to oils’ natural variation in composition and complex chemical signals but the suggested two-step analytical procedure is a promising approach with very good initial results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technological approach in the analysis and forensic interpretation of Total Hydrocarbons in soils and waters using 2D Gas Chromatography method (GC-GC) was developed alongside environmental forensic and the assessment models to provide better customer products for the environmental industry.
The objective was to develop an analytical methodology for TPH CWG. Raw data from this method is then to be evaluated for forensic interpretation and risk assessment modelling. Access will be made available to the expertise in methods of forensic tracing contaminant sources, transport modelling, human health risk modelling and detailed quantitative risk assessment.
The quantification of internal standards was key to the development of this method. As the laboratory does not test for TPH in 1D, it was requested during INAB ISO 17025 audit to individually map out where each compound falls chromatographically in the 2D. This was done through comparing carbon equivalent numbers to the n-alkane carbons. This proved e.g. 2-methylnaphthalene has 11 carbons in its structure; its carbon equivalent is 12.84 , the result of which falls within the band of Aromatic eC12-eC16 as opposed to expected eC10-eC12. This was carried out for all 16 PAH (polyaromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene and o, m and p-xylenes). The n-alkanes were also assigned to their corresponding aliphatic bands e.g. nC8 would be expected to be in nC8-nC10.
The method was validated through a designated systematic experimental protocol and was challenged with spikes of known concentration of hydrocarbon parameters such as recoveries, precision, bias and linearity. The method was verified by testing a certified reference material which was used as a proficiency round of testing for numerous laboratories.
It is hoped that the method will be used in conjunction with the analysis through Bonn Agreement with their OSINet group. This is a panel of experts and laboratories (including CLS) who forensically identify oil spill contamination from a water source.
This method can prove itself to be a robust method and benefit the industry for contaminated land and water but the method needs to be seen as separate from the regular 1D chromatography. It will help identify contaminants and assist consultants, regulators, clients and scientists valuable information not seen in 1D

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbed lipid metabolism is a well-established feature of human Alzheimer’s disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbed lipid metabolism is a well-established feature of human Alzheimer's disease (AD). The present study used gas chromatography-mass spectrometry (GC-MS) analysis of fatty acid methyl esters (FAMES) to profile all detectable fatty acid (FA) species present in post-mortem neocortical tissue (Brodmann 7 region). Quantitative targeted analysis was undertaken from 29 subjects (n=15 age-matched controls; n=14 late-stage AD). GC-MS analysis of FAMES detected a total of 24 FAs and of these, 20 were fully quantifiable. The results showed significant and wide ranging elevations in AD brain FA concentrations. A total of 9 FAs were elevated in AD with cis-13,16-docosenoic acid increased most (170%; P=0.033). Intriguingly, docosahexanoic acid (DHA; C22:6) concentrations were elevated (47%; P=0.018) which conflicts with the findings of others (unaltered or decreased) in some brain regions after the onset of AD. Furthermore, our results appear to indicate that subject gender influences brain FA levels in AD subjects (but not in age-matched control subjects). Among AD subjects 7 FA species were significantly higher in males than in females. These preliminary findings pinpoint FA disturbances as potentially important in the pathology of AD. Further work is required to determine if such changes are influenced by disease severity or different types of dementia.