14 resultados para Functional Magnetic Resonance Imaging

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the “New Biology” era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To explore, using functional magnetic resonance imaging (MRI), the functional organisation of phonological processing in young adults born very preterm.

Subjects: Six right handed male subjects with radiological evidence of thinning of the corpus callosum were selected from a cohort of very preterm subjects. Six normal right handed male volunteers acted as controls.

Method: Blood oxygenation level dependent contrast echoplanar images were acquired over five minutes at 1.5 T while subjects performed the tasks. During the ON condition, subjects were visually presented with pairs of non-words and asked to press a key when a pair of words rhymed (phonological processing). This task alternated with the OFF condition, which required subjects to make letter case judgments of visually presented pairs of consonant letter strings (orthographic processing). Generic brain activation maps were constructed from individual images by sinusoidal regression and non-parametric testing. Between group differences in the mean power of experimental response were identified on a voxel wise basis by analysis of variance.

Results: Compared with controls, the subjects with thinning of the corpus callosum showed significantly reduced power of response in the left hemisphere, including the peristriate cortex and the cerebellum, as well as in the right parietal association area. Significantly increased power of response was observed in the right precentral gyrus and the right supplementary motor area.

Conclusions: The data show evidence of increased frontal and decreased occipital activation in male subjects with neurodevelopmental thinning of the corpus callosum, which may be due to the operation of developmental compensatory mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS) PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure and brain activity was contrasted on switching and non switching blocks using SARI Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task set reconfiguration In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network which has been linked to attentional control The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes cognition and behaviour (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be 'decoded' from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports from individual centres suggest a preponderance of females with chronic cough. Females also have heightened cough reflex sensitivity. Here we have reviewed the age and sex of unselected referrals to 11 cough clinics. To investigate the cause of any observed sex dimorphism, functional magnetic resonance imaging of putative cough centres was analysed in normal volunteers. The demographic profile of consecutive patients presenting with chronic cough was evaluated. Cough challenge with capsaicin was undertaken in normal volunteers to construct a concentration-response curve. Subsequent functional magnetic resonance imaging during repeated inhalation of sub-tussive concentrations of capsaicin observed areas of activation within the brain and differences in the sexes identified. Of the 10 032 patients presenting with chronic cough, two-thirds (6591) were female (mean age 55 years). The patient profile was largely uniform across centres. The most common age for presentation was 60-69 years. The maximum tolerable dose of inhaled capsaicin was lower in females; however, a significantly greater activation of the somatosensory cortex was observed. Patients presenting with chronic cough from diverse racial and geographic backgrounds have a strikingly homogeneous demographic profile, suggesting a distinct clinical entity. The preponderance of females may be explained by sex-related differences in the central processing of cough sensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate classification techniques have proven to be powerful tools for distinguishing experimental conditions in single sessions of functional magnetic resonance imaging (fMRI) data. But they are vulnerable to a considerable penalty in classification accuracy when applied across sessions or participants, calling into question the degree to which fine-grained encodings are shared across subjects. Here, we introduce joint learning techniques, where feature selection is carried out using a held-out subset of a target dataset, before training a linear classifier on a source dataset. Single trials of functional MRI data from a covert property generation task are classified with regularized regression techniques to predict the semantic class of stimuli. With our selection techniques (joint ranking feature selection (JRFS) and disjoint feature selection (DJFS)), classification performance during cross-session prediction improved greatly, relative to feature selection on the source session data only. Compared with JRFS, DJFS showed significant improvements for cross-participant classification. And when using a groupwise training, DJFS approached the accuracies seen for prediction across different sessions from the same participant. Comparing several feature selection strategies, we found that a simple univariate ANOVA selection technique or a minimal searchlight (one voxel in size) is appropriate, compared with larger searchlights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of 1H NMR spectroscopy in mixture analysis and metabolomics, the use of 13C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways (‘fluxomics’) and the use of 31P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances— such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation—are opening new avenues for today’s biological NMR spectroscopists.