49 resultados para Función ventricular

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic administration of thiazolidinediones might predispose to cardiac hypertrophy. The aim was to investigate direct effects of rosiglitazone in rat ventricular cardiomyocytes maintained in vitro (24 h). Rosiglitazone (=10-5 M) did not increase protein synthesis and produced small inconsistent increases in cellular protein. In the presence of serum (10% v/v), but not insulin-like growth factor (IGF-1, 10-8 M) or insulin (1 U/ml), an interaction with rosiglitazone to stimulate protein synthesis was observed. The hypertrophic responses to noradrenaline (5×10-6 M), PMA (10-7 M) and ET-1 (10-7 M) were not attenuated by rosiglitazone. Rosiglitazone (10-7 M) did not influence protein synthesis in response to insulin (1 U/ml) and elevated glucose (2.5×10-2 M) alone or in combination, but attenuated the increase in protein mass observed in response to elevated glucose alone. In re-differentiated cardiomyocytes, a model of established hypertrophy, rosiglitazone (10-8 M–10-6 M) increased protein synthesis. Together, these data indicate that rosiglitazone does not initiate cardiomyocyte hypertrophy directly in vitro. However, during chronic administration, the interaction of rosiglitazone with locally-derived growth-regulating factors may make a modest contribution to cardiac remodelling and influence the extent of compensatory hypertrophy of the compromised rat heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatostatin-14 elicits negative inotropic and chronotropic actions in atrial myocardium. Less is known about the effects of somatostatin-14 in ventricular myocardium. The direct contractile effects of somatostatin-14 were assessed using ventricular cardiomyocytes isolated from the hearts of adult rats. Cells were stimulated at 0.5 Hz with CaCl2 (2 mM) under basal conditions and in the presence of the -adrenoceptor agonist, isoprenaline (1 nM), or the selective inhibitor of the transient outward current (Ito), 4-aminopyridine (500 M). Somatostatin-14 did not alter basal contractile response but it did inhibit (IC50 13 nM) the response to isoprenaline (1 nM). In the presence of 4-aminopyridine (500 M), somatostatin-14 stimulated a positive contractile response (EC50 118 fM) that was attenuated markedly by diltiazem (100 nM). These data indicate that somatostatin-14 exerts dual effects directly in rat ventricular cardiomyocytes: (1) a negative contractile effect, observed in the presence of isoprenaline (1 nM), coupled to activation of Ito; and (2) a previously unreported and very potent positive contractile effect, unmasked by 4-aminopyridine (500 M), coupled to the influx of calcium ions via L-type calcium channels. The greater potency of somatostatin-14 for producing the positive contractile effect indicates that the peptide may exert a predominantly stimulatory influence on the resting contractility of ventricular myocardium in vivo, whereas the negative contractile effect, observed at much higher concentrations, could indicate that localized elevations in the concentration of the peptide may serve as a negative regulatory influence to limit the detrimental effects of excessive stimulation of cardiomyocyte contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Somatostatin-14 (SRIF-14), a neuropeptide co-stored with acetylcholine in the cardiac parasympathetic innervation, exerts both positive and negative influences directly on contraction of ventricular cardiomyocytes, indicative of involvement of more than one of five known SRIF (SSTR) receptor subtypes. The aim was to characterize receptor subtype expression in adult rat ventricular cardiomyocytes and to investigate the influence of a series of SRIF (SSTR) subtype-selective agonists on contractile parameters. Methods: mRNA and protein expression of each receptor subtype were quantified by RT-PCR and immunoblotting respectively; for contraction studies, cells were stimulated at 0.5 Hz under basal conditions and in the presence of isoprenaline (ISO, 10-8M). Results: all five SRIF (SSTR) receptor subtypes were expressed in cardiomyocytes although SRIF1A (SSTR2) and SRIF2A (SSTR1) were less abundant than the other subtypes. L803087 (10-8M), a SRIF2B (SSTR4) agonist, attenuated ISO-stimulated peak contractile amplitude and prolonged relaxation time (T50). L796778 (10-7M), a SRIF1C (SSTR3) agonist, augmented basal and ISO-stimulated peak contractile amplitude; L779976 (10-8M) and L817818 (10-9M), agonists at SRIF1A (SSTR2) and SRIF1B (SSTR5) receptors, respectively, also augmented ISO-stimulated peak amplitude. Conclusion: these data support involvement of SRIF2B (SSTR4) receptors in the negative contractile effects of SRIF-14, while one or more of the three SRIF1 receptor subtypes (SSTR2, 3 or 5) may contribute to the positive contractile effects of SRIF-14.