19 resultados para Fuel, Cfd, Bagasse, Boiler, Stockpile, Cogeneration, Modelling

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate modelling of the internal climate of buildings is essential if Building Energy Management Systems (BEMS) are to efficiently maintain adequate thermal comfort. Computational fluid dynamics (CFD) models are usually utilised to predict internal climate. Nevertheless CFD models, although providing the necessary level of accuracy, are highly computationally expensive, and cannot practically be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. ROMs are shown to be adequately accurate with a total error below 5% and to retain satisfactory representation of the phenomena modelled. Each ROM has a time to solution under 20seconds, which opens the potential of their integration with BEMS, giving real-time physics-based building energy modelling. A parameter study was conducted to investigate the applicability of the extracted ROM to initial boundary conditions different from those from which it was extracted. The results show that the ROMs retained satisfactory total errors when the initial conditions in the room were varied by ±5°C. This allows the production of a finite number of ROMs with the ability to rapidly model many possible scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Well planned natural ventilation strategies and systems in the built environments may provide healthy and comfortable indoor conditions, while contributing to a significant reduction in the energy consumed by buildings. Computational Fluid Dynamics (CFD) is particularly suited for modelling indoor conditions in naturally ventilated spaces, which are difficult to predict using other types of building simulation tools. Hence, accurate and reliable CFD models of naturally ventilated indoor spaces are necessary to support the effective design and operation of indoor environments in buildings. This paper presents a formal calibration methodology for the development of CFD models of naturally ventilated indoor environments. The methodology explains how to qualitatively and quantitatively verify and validate CFD models, including parametric analysis utilising the response surface technique to support a robust calibration process. The proposed methodology is demonstrated on a naturally ventilated study zone in the library building at the National University of Ireland in Galway. The calibration process is supported by the on-site measurements performed in a normally operating building. The measurement of outdoor weather data provided boundary conditions for the CFD model, while a network of wireless sensors supplied air speeds and air temperatures inside the room for the model calibration. The concepts and techniques developed here will enhance the process of achieving reliable CFD models that represent indoor spaces and provide new and valuable information for estimating the effect of the boundary conditions on the CFD model results in indoor environments. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The flow through and downstream of a row of seven open draft tubes in a barrage has been investigated through laboratory experiments in a wide flume, a three-dimensional (3D) computational fluid dynamics simulation, and a two-dimensional depth-averaged computation. Agreement between the experiments and the 3D modeling is shown to be good, including the prediction of an asymmetric Coandă effect. One aim is to determine the distance downstream at which depth-averaged modeling provides a reasonable prediction; this is shown to be approximately 20 tube diameters downstream of the barrage. Upstream of this, the depth-averaged modeling inaccurately predicts water level, bed shear, and the 3D flow field. The 3D model shows that bed shear stress can be markedly magnified near the barrage, particularly where the jets become attached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article presents cost modeling results from the application of the Genetic-Causal cost modeling principle. Industrial results from redesign are also presented to verify the opportunity for early concept cost optimization by using Genetic-Causal cost drivers to guide the conceptual design process for structural assemblies. The acquisition cost is considered through the modeling of the recurring unit cost and non-recurring design cost. The operational cost is modeled relative to acquisition cost and fuel burn for predominately metal or composites designs. The main contribution of this study is the application of the Genetic-Causal principle to the modeling of cost, helping to understand how conceptual design parameters impact on cost, and linking that to customer requirements and life cycle cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since their introduction in the 1950s, marine outfalls with diffusers have been prone to saline intrusion, a process in which seawater ingresses into the outfall. This can greatly reduce the dilution and subsequent dispersion of wastewater discharged, sometimes resulting in serious deterioration of coastal water quality. Although long aware of the difficulties posed by saline intrusion, engineers still lack satisfactory methods for its prediction and robust design methods for its alleviation. However, with recent developments in numerical methods and computer power, it has been suggested that commercially available computational fluid dynamics (CFD) software may be a useful aid in combating this phenomenon by improving understanding through synthesising likely behaviour. This document reviews current knowledge on saline intrusion and its implications and then outlines a model-scale investigation of the process undertaken at Queen's University Belfast, using both physical and CFD methods. Results are presented for a simple outfall configuration, incorporating several outlets. The features observed agree with general observations from full-scale marine outfalls, and quantify the intricate internal flow mechanisms associated with saline intrusion. The two-dimensional numerical model was found to represent saline intrusion, but in a qualitative manner, not yet adequate for design purposes. Specific areas requiring further development were identified. The ultimate aim is to provide a reliable, practical and cost effective means by which engineers can minimise saline intrusion through optimised outfall design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presented results from a details and comprehensive simulation using finite element method of the practical operation of an electrical machine. The results it displayed have been used in practice to design more efficient equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing need to identify the rheological properties of cement grout using a simple test to determine the fluidity, and other properties of underwater applications such as washout resistance and compressive strength. This paper reviews statistical models developed using a factorial design that was carried out to model the influence of key parameters on properties affecting the performance of underwater cement grout. Such responses of fluidity included minislump and flow time measured by Marsh cone, washout resistance, unit weight, and compressive strength. The models are valid for mixes with 0.35–0.55 water-to-binder ratio (W/B), 0.053–0.141% of antiwashout admixture (AWA), by mass of water, and 0.4–1.8% (dry extract) of superplasticizer (SP), by mass of binder. Two types of underwater grout were tested: the first one made with cement and the second one made with 20% of pulverised fuel ash (PFA) replacement, by mass of binder. Also presented are the derived models that enable the identification of underlying primary factors and their interactions that influence the modelled responses of underwater cement grout. Such parameters can be useful to reduce the test protocol needed for proportioning of underwater cement grout. This paper attempts also to demonstrate the usefulness of the models to better understand trade-offs between parameters and compare the responses obtained from the various test methods that are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern internal combustion (IC) engines reject around two thirds of the energy provided by the fuel as low-grade waste heat. Capturing a portion of this waste heat energy and transforming it into a more useful form of energy could result in a significant reduction in fuel consumption. By using the low-grade heat, an organic Rankine cycle (ORC) can produce mechanical work from a pressurised organic fluid with the use of an expander.
Ideal gas assumptions are shown to produce significant errors in expander performance predictions when using an organic fluid. This paper details the mathematical modelling technique used to accurately model the thermodynamic processes for both ideal and non-ideal fluids within the reciprocating expander. A comparison between the two methods illustrates the extent of the errors when modelling a reciprocating piston expander. Use of the ideal gas assumptions are shown to produce an error of 55% in the prediction of power produced by the expander when operating on refrigerant R134a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.

This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.

The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.