3 resultados para Fruit removal force

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An environment friendly arsenic removal technique from contaminated soil with high iron content has been studied. A natural surfactant extracted from soapnut fruit, phosphate solution and their mixture was used separately as extractants. The mixture was most effective in desorbing arsenic, attaining above 70 % efficiency in the pH range of 4–5. Desorption kinetics followed Elovich model. Micellar solubilization by soapnut and arsenic exchange mechanism by phosphate are the probable mechanisms behind arsenic desorption. Sequential extraction reveals that the mixed soapnut–phosphate system is effective in desorbing arsenic associated with amphoteric–Fe-oxide forms. No chemical change to the wash solutions was observed by Fourier transform-infrared spectra. Soil:solution ratio, surfactant and phosphate concentrations were found to affect the arsenic desorption process. Addition of phosphate boosted the performance of soapnut solution considerably. Response surface methodology approach predicted up to 80 % desorption of arsenic from soil when treated with a mixture of ≈1.5 % soapnut, ≈100 mM phosphate at a soil:solution ratio of 1:30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study explores the application of a two-stage electrokinetic washing system on remediation of lead (Pb) contaminated soil. The process involved an initial soil washing, followed by an electrokinetic process. The use of electrokinetic process in soil washing not only provided additional driving force for transporting the desorbed Pb away from the soil but also reduced the high usage of wash solution. In this study, the effect of NaNO3, HNO3, citric acid and EDTA as wash solutions on two-stage electrokinetic washing system were evaluated. The results revealed that a two-stage electrokinetic washing process enhanced Pb removal efficiency by 2.52-9.08% and 4.98-20.45% in comparison to a normal electrokinetic process and normal washing process, respectively. Low pH and adequate current were the most important criteria in the removal process as they provided superior desorption and transport properties. The effect of chelating by EDTA was less dominant as it delayed the removal process by forming a transport loop in anode region between Pb ion and complexes. HNO3 was not suitable as wash solution in electrokinetic washing in spite of offering highest removal efficiency as it caused pH fluctuation in the cathode chamber, corroded graphite anode and showed high power consumption. In contrast, citric acid not only yielded high Pb removal efficiency with low power consumption but also maintained a low soil: solution ratio of 1 g: <1 mL, stable pH and electrode integrity. Possible transport mechanisms for Pb under each wash solution are also discussed in this work.