37 resultados para Friction

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reduce potential uncertainties and conservatism in welded panel analysis procedures, understanding of the relationships between welding process parameters and static strength is required. The aim of this study is to determine and characterize the key process induced properties of advanced welding assembly methods on stiffened panel local buckling and collapse performance. To this end, an in-depth experimental and computational study of the static strength of a friction stir welded fuselage skin-stiffener panel subjected to compression loading has been undertaken. Four welding process effects, viz. the weld joint width, the width of the weld Heat Affected Zone, the strength of material within the weld Heat Affected Zone and the magnitude of welding induced residual stress, are investigated. A fractional factorial experiment design method (Taguchi) has been applied to identify the relative importance of each welding process effect and investigate effect interactions on both local skin buckling and crippling collapse performance. For the identified dominant welding process effects, parametric studies have been undertaken to identify critical welding process effect magnitudes and boundaries. The studies have shown that local skin buckling is principally influenced by the magnitude of welding induced residual stress and that the strength of material in the Heat Affected Zone and the magnitude of the welding induced residual stress have the greatest influence on crippling collapse behavior.


--------------------------------------------------------------------------------

Reaxys Database Information
|

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. Current design and analysis methods for aircraft panels have been developed and validated for riveted fabrication. For welded panels, considering the buckling collapse design philosophy of aircraft stiffened panels, strength prediction methods considering welding process effects for both local-buckling and post-buckling behaviours must be developed and validated. This article reports on the work undertaken to develop analysis methods for the crippling failure of stiffened panels fabricated using laser beam and friction stir welding. The work assesses modifications to conventional analysis methods and finite-element analysis methods for strength prediction. The analysis work is validated experimentally with welded single stiffener crippling specimens. The experimental programme has demonstrated the potential static strength of laser beam and friction stir welded sheet-stiffener joints for post-buckling panel applications. The work undertaken has demonstrated that the crippling behaviour of welded stiffened panels may be analysed considering standard-buckling behaviour. However, stiffened panel buckling analysis procedures must be altered to account for the weld joint geometry and process altered material properties. © IMechE 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. However, welding processes can introduce undesirable residual stresses and distortions in the final fabricated components, as well as localized loss of mechanical properties at the weld joints. The aim of this research is to determine and characterize the key process effects of advanced welding assembly methods on stiffened panel static strength performance. This in-depth understanding of the relationships between welding process effects and buckling and collapse strength is required to achieve manufacturing cost reductions without introducing structural analysis uncertainties and hence conservative over designed welded panels. This current work is focused at the sub-component level and examines the static strength of friction stir welded multi stiffener panels. The undertaken experimental and computational studies have demonstrated that local skin buckling is predominantly influenced by the magnitude of welding induced residual stresses and associated geometric distortions, whereas panel collapse behavior is sensitive to the lateral width of the physically joined skin and stiffener flange material, the strength of material in the Heat Affected Zone as well as the magnitude of the welding induced residual stresses. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.


--------------------------------------------------------------------------------

Reaxys Database Information
|

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact friction plays a critical role in all the major thermoforming processes for polymers. However, these effects are very difficult to measure in practice and, as a result, have received little scientific investigation. In this work, two independently developed test methods for the measurement of elevated temperature polymer-to-polymer contact friction are presented, and their results are compared in detail for the first time. One is based on a modified moving sled friction test, whereas the other uses a rotational rheometer. In each case, friction tests were conducted between two plug and two sheet materials. The results show that broadly similar coefficients of friction were obtained from the two test methods. The measured values were quite low (<0.3) at lower temperatures and typically were higher for polypropylene (PP) sheet than for polystyrene (PS). On approaching the glass transition temperature for PS (95°C) and the crystalline melting point for PP (165°C), the friction coefficients rose very sharply, and both test techniques became increasingly unreliable. It was concluded that despite their physical differences, both test techniques were able to capture the highly temperature sensitive nature of friction between polymer materials used in thermoforming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately predict residual stresses and resultant distortions is a key product from process assembly simulations. Assembly processes necessarily consider large structural components potentially making simulations computationally expensive. The objective herein is to develop greater understanding of the influence of friction stir welding process idealization on the prediction of residual stress and distortion and thus determine the minimum required modeling fidelity for future airframe assembly simulations. The combined computational and experimental results highlight the importance of accurately representing the welding forging force and process speed. In addition, the results emphasize that increased CPU simulation times are associated with representing the tool torque, while there is potentially only local increase in prediction fidelity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite Element simulations and mechanical tests are undertaken to assess the impact of weld joint location on stiffened panel static strength. An upper wing cover panel, with a manufacturing process of welding multiple near-net-shape multi-stiffener extrusions with a final net-shape machining phase is investigated. The 7000 series aluminium alloy extrusions and skin bay longitudinal friction stir butt welds are examined. Geometric imperfections exhibit the greatest influence on panel collapse, thus for static strength design the selection of weld joint location should minimise imperfection generation. Moreover the analysis demonstrates limited impact on panel collapse strength when an optimised welding process is employed. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element model is developed to predict the stress-strain behaviour of particulate composites with fully unbonded filler particles. This condition can occur because of the lack of adhesion property of the filler surface. Whilst part of the filler particle is separated from the matrix, another section of filler keeps in contact with the matrix because of the lateral compressive displacement of the matrix. The slip boundary condition is imposed on the section of the interface that remains closed. The states of stress and displacement fields are obtained. The location of any further deformation through crazing or shear band formation is identified. A completely unbonded inclusion with partial slip at a section of the interface reduces the concentration of the stress at the interface significantly. Whereas this might lead to slightly higher strength, it decreases the load transfer efficiency and stiffness of this type of composite.