3 resultados para Framework Android robot Arduino Uno Bluetooth
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Android is becoming ubiquitous and currently has the largest share of the mobile OS market with billions of application downloads from the official app market. It has also become the platform most targeted by mobile malware that are becoming more sophisticated to evade state-of-the-art detection approaches. Many Android malware families employ obfuscation techniques in order to avoid detection and this may defeat static analysis based approaches. Dynamic analysis on the other hand may be used to overcome this limitation. Hence in this paper we propose DynaLog, a dynamic analysis based framework for characterizing Android applications. The framework provides the capability to analyse the behaviour of applications based on an extensive number of dynamic features. It provides an automated platform for mass analysis and characterization of apps that is useful for quickly identifying and isolating malicious applications. The DynaLog framework leverages existing open source tools to extract and log high level behaviours, API calls, and critical events that can be used to explore the characteristics of an application, thus providing an extensible dynamic analysis platform for detecting Android malware. DynaLog is evaluated using real malware samples and clean applications demonstrating its capabilities for effective analysis and detection of malicious applications.
Resumo:
App collusion refers to two or more apps working together to achieve a malicious goal that they otherwise would not be able to achieve individually. The permissions based security model (PBSM) for Android does not address this threat, as it is rather limited to mitigating risks due to individual apps. This paper presents a technique for assessing the threat of collusion for apps, which is a first step towards quantifying collusion risk, and allows us to narrow down to candidate apps for collusion, which is critical given the high volume of Android apps available. We present our empirical analysis using a classified corpus of over 29000 Android apps provided by Intel Security.