35 resultados para Formation process

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using both dynamical and chemical modelling, we derive an accurate abundance profile for the molecule SiO in the stellar wind of R Dor, an O-rich AGB star. SiO plays a key role in the dust formation process in O-rich AGB stars. This method will be applied to additional molecules, with the aim to achieve a detailed overview of the molecular abundance pattern in the wind of R Dor.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with,gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of similar to1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of similar to0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a l:I stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that then is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton transfer mechanism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. Complex molecules such as ethanol and dimethyl ether have been observed in a number of hot molecular cores and hot corinos. Attempts to model the molecular formation process using gas phase only models have so far been unsuccessful. Aims. To demonstrate that grain surface processing is a viable mechanism for complex molecule formation in these environments. Methods. A variable environment parameter computer model has been constructed which includes both gas and surface chemistry. This is used to investigate a variety of cloud collapse scenarios. Results. Comparison between model results and observation shows that by combining grain surface processing with gas phase chemistry complex molecules can be produced in observed abundances in a number of core and corino scenarios. Differences in abundances are due to the initial atomic and molecular composition of the core/corino and varying collapse timescales. Conclusions. Grain surface processing, combined with variation of physical conditions, can be regarded as a viable method for the formation of complex molecules in the environment found in the vicinity of a hot core/corino and produce abundances comparable to those observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental evidence of plasma jets ejected from the rear side of thin solid targets irradiated by ultraintense (> 10(19) W cm(-2)) laser pulses is presented. The jets, detected by transverse interferometric measurements with high spatial and temporal resolutions, show collimated expansion lasting for several hundreds of picoseconds and have substantially steep density gradients at their periphery. The role played by radiation pressure of the laser in the jet formation process is highlighted analytically and by extensive two-dimensional particle-in-cell simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of chemically etched fibre tips for use in optical scanning probe microscopy is addressed. For tips formed at a cleaved fibre end in the bulk of a buffered HF acid solution the morphological features (tip height, cone angle) are found to depend strongly on the temperature and etchant composition. The tip formation process is analysed and explained in terms of a simple model in which the only pertinent physical parameters are the fibre core diameter and etch rates of the fibre core and cladding. The etch rates are determined in separate experiments as a function of temperature (in the range 24-50 degreesC) for etchant solutions of de ionised water: 50% HF acid: 40% NH4F in the volume ratio 1 : 1 : X for X=2, 4 and 6, and used in the model to yield a correct description of the experimental tip cone angles. The model is successfully extended to the intriguing case of negative tip formation which initiates in a normal, positive tip structure. By contrast, tip formation in the meniscus region of a bare fibre/etchant/organic solvent system is found to be independent of etchant composition and temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies disinflationary shocks in a non-linear New Keynesian model with search and matching frictions and moral hazard in the labor markets. Our focus is on understanding the wage formation process as well as welfare costs of disinflations in the presence of such labor market frictions.

The presence of imperfect information in labor markets imposes a lower bound on worker surplus that varies endogenously. Consequently equilibrium can take two forms depending on whether the no shirking condition is binding or not. We also evaluate both regimes from a welfare perspective when the economy is subject to a perfectly credible disinflationary shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.

Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.

Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. 

Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. 

Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. 

Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1

Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an experimental investigation on the pressure dip phenomenon in a conical pile of granular solids. The roles of different deposition processes such as the pouring rate, pouring height and deposition jet size on the pressure dip formation were studied. Test results confirmed that the pressure dip is a robust phenomenon in a pile formed by top deposition. When the deposition jet radius is significantly smaller than the final pile radius (i.e. concentrated deposition), a dip developed in the centre as shown in previous studies. However, when the deposition jet radius is comparable to the final pile radius (i.e. diffuse deposition), the location of the dip moves towards the edge of deposition jet, with a local maximum pressure developed in the centre. For concentrated deposition, an increase in the pouring rate may enhance the depth of the dip and reduce its width, while an increase in the pouring height has only a negligible effect in the studied range. The results suggest the pressure dip is closely related to the initial location, intensity and form of downslope flows. © 2013 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms and kinetics studies of the formation of levoglucosan and formaldehyde from anhydroglucose radical have been carried out theoretically in this paper. The geometries and frequencies of all the stationary points are calculated at the B3LYP/6-31+G(D,P) level based on quantum mechanics, Six elementary reactions are found, and three global reactions are involved. The variational transition-state rate constants for the elementary reactions are calculated within 450-1500 K. The global rate constants for every pathway are evaluated from the sum of the individual elementary reaction rate constants. The first-order Arrhenius expressions for these six elementary reactions and the three pathways are suggested. By comparing with the experimental data, computational methods without tunneling correction give good description for Path1 (the formation of levoglucosan); while methods with tunneling correction (zero-curvature tunneling and small-curvature tunneling correction) give good results for Path2 (the first possibility for the formation of formaldehyde), all the test methods give similar results for Path3 (the second possibility for the formation of formaldehyde), all the modeling results for Path3 are in good agreement with the experimental data, verifying that it is the most possible way for the formation of formaldehyde during cellulose pyrolysis. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the influence of process parameters on the fluidised hot melt granulation of lactose and PEG 6000, and the subsequent tablet pressing of the granules. Granulation experiments were performed to assess the effect of granulation time and binder content of the feed on the resulting granule properties such as mass mean granule size, size distribution, granule fracture stress, and granule porosity. These data were correlated using the granule growth regime model. It was found that the dominant granule growth mechanisms in this melt granulation system were nucleation followed by steady growth (PEG 10–20% w/w). However, with binder contents greater than 20% w/w, the granulation mechanism moved to the “over-wet massing” regime in which discrete granule formation could not be obtained. The granules produced in the melt fluidised bed process were subsequently pressed into tablets using an industrial tablet press. The physical properties of the tablets: fracture stress, disintegration time and friability were assessed using industry standards. These analyses indicated that particle size and binder content of the initial granules influenced the mechanical properties of the tablets. It was noted that a decrease in initial granule size resulted in an increase in the fracture stress of the tablets formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of precision grinding for the formation of a silicon diaphragm is investigated. The test structures involved 2-6 mm diam diaphragms with thicknesses in the range of 25-150 //m. When grinding is performed without supporting the diaphragm, bending occurs due to nonuniform removal of the silicon material over the diaphragm region. The magnitude of bending depends on the µNal thickness of the diaphragm. The results demonstrate that the use of a porous silicon support can significantly reduce the amount of bending, by a factor of up to 300 in the case of 50 m thick diaphragms. The use of silicon on insulator (SOI) technology can also suppress or eliminate bending although this may be a less economical process. Stress measurements in the diaphragms were performed using x-ray and Raman spectroscopies. The results show stress of the order of 1 X107-! X108 Pa in unsupported and supported by porous silicon diaphragms while SOI technology provides stress-free diaphragms. Results obtained from finite element method analysis to determine deterioration in the performance of a 6 mm diaphragm due to bending are presented. These results show a 10% reduction in performance for a 75 µm thick diaphragm with bending amplitude of 30 fim, but negligible reduction if the bending is reduced to

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The O removal through water formation is an important process in the Fischer-Tropsch synthesis. In this study, both steps in water formation (O + H --> OH, OH + H --> H2O) are studied on the stepped Co(0001) at high coverages using density functional theory. We find the following. (i) In both O-O and O-OH co-adsorption systems, two transition states (TSs) were located for the O hydrogenation: in one TS, both O and H are on the same terrace, and in the other they are at the interface between the step edge and the terrace below. (ii) In both the O-O and O-OH co-adsorption systems, the O hydrogenation at the interface is easier (E-a = 0.32 eV in the O-O system, E-a = 1.10 eV in the O-OH system) than that on the same terrace (E-a = 1.49 eV in the O-O system, E-a = 1.80 eV in the O-OH system). (iii) In both the O-O and O-OH co-adsorption systems, only one TS for the OH hydrogenation was located, in which both OH and H are on the same terrace. (iv) Compared to the OH hydrogenation in the O-OH system (E-a = 1.46 eV), the reaction in the OH-OH system (E-a = 0.64 eV) is much easier. The barrier differences and the water effect on the Fischer-Tropsch synthesis are discussed. A possible route with low barriers for water formation is proposed.