13 resultados para Formation damage

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Finite element modeling of the formation of pre-loaded damage in cement mantles of orthopaedic joint replacements was presented. The existence of cracking suggested a high level of residual stress. The direction of maximum principal stress vectors corresponded well with the observed crack orientation. Results suggested that cracking depends upon a combination of residual stress, porosity and temperature rise during polymerization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BRCA1 and BRCA2 are highly penetrant breast and ovarian cancer susceptibility genes that are mutated in a significant proportion of familial breast and ovarian cancer syndromes. Both of these genes are tumour suppressors, the products of which play vital roles in the cellular response to DNA damage. These proteins function in a number of cellular pathways in order to maintain genomic stability including DNA damage signaling, DNA repair, cell cycle regulation, protein ubiquitination, chromatin remodeling, transcriptional regulation and apoptosis. This chapter will discuss the functions of these proteins and how they relate to tumour development, and therapy. © 2009 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Platelet glycoprotein (GP) Ib-IX-V supports platelet adhesion on damaged vascular walls by binding to von Willebrand factor (VWF). For several decades it has been recognized that the alpha-subunit of GP (GPIb alpha) also binds thrombin but the physiological relevance, if any, of this interaction was unknown. Previous studies have shown that a sulfated tyrosine 276 (Tyr276) is essential for thrombin binding to GPIb alpha.Objectives: This study investigated the in vivo relevance of GPIb alpha residue Tyr276 in hemostasis and thrombosis.Methods: Transgenic mouse colonies expressing the normal human GPIb alpha subunit or a mutant human GPIb alpha containing a Phe substitution for Tyr276 (hTg(Y276F)) were generated. Both colonies were bred to mice devoid of murine GPIb alpha.Results: Surface-expressed GPIb alpha levels and platelet counts were similar in both colonies. hTg(Y276F) platelets were significantly impaired in binding alpha-thrombin but displayed normal binding to type I fibrillar collagen and human VWF in the presence of ristocetin. In vivo thrombus formation as a result of chemical damage (FeCl3) demonstrated that hTg(Y276F) mice have a delayed time to occlusion followed by unstable blood flow indicative of embolization. In models of laser-induced injury, thrombi developing in hTg(Y276F) animals were also less stable.Conclusions: The results demonstrate that GPIb alpha residue Tyr276 is physiologically important, supporting stable thrombus formation in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cdk2 and cdk1 are individually dispensable for cell-cycle progression in cancer cell lines because they are able to compensate for one another. However, shRNA-mediated depletion of cdk1 alone or small molecule cdk1 inhibition abrogated S phase cell-cycle arrest and the phosphorylation of a subset of ATR/ATM targets after DNA damage. Loss of DNA damage-induced checkpoint control was caused by a reduction in formation of BRCA1-containing foci. Mutation of BRCA1 at S1497 and S1189/S1191 resulted in loss of cdk1-mediated phosphorylation and also compromised formation of BRCA1-containing foci. Abrogation of checkpoint control after cdk1 depletion or inhibition in non-small-cell lung cancer cells sensitized them to DNA-damaging agents. Conversely, reduced cdk1 activity caused more potent G2/M arrest in nontransformed cells and antagonized the response to subsequent DNA damage. Cdk1 inhibition may therefore selectively sensitize BRCA1-proficient cancer cells to DNA-damaging treatments by disrupting BRCA1 function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pathogenesis of diabetic retinopathy is complex, reflecting the array of systemic and tissue-specific metabolic abnormalities. A range of pathogenic pathways are directly linked to hyperglycaemia and dyslipidaemia, and the retina appears to be exquisitely sensitive to damage. Establishing the biochemical and molecular basis for this pathology remains an important research focus. This review concentrates on the formation of a range of protein adducts that form after exposure to modifying intermediates known to be elevated during diabetes. These so-called advanced glycation end products (AGEs) and advanced lipoxidation end products (ALEs) are thought to play an important role in the initiation and progression of diabetic retinopathy, and mechanisms leading to dysfunction and death of various retinal cells are becoming understood. Perspective is provided on AGE/ALE formation in the retina and the impact that such adducts have on retinal cell function. There will be emphasis placed on the role of the receptor for AGEs and how this may modulate retinal pathology, especially in relation to oxidative stress and inflammation. The review will conclude by discussion of strategies to inhibit AGE/ALE formation or harmful receptor interactions in order to prevent disease progression from the point of diabetes diagnosis to sight-threatening proliferative diabetic retinopathy and diabetic macular oedema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress is implicated in the pathogenesis of numerous disease processes including diabetes mellitus, atherosclerosis, ischaemia reperfusion injury and rheumatoid arthritis. Chemical modification of amino acids in protein during lipid peroxidation results in the formation of lipoxidation products which may serve as indicators of oxidative stress in vivo. The focus of the studies described here was initially to identify chemical modifications of protein derived exclusively from lipids in order to assess the role of lipid peroxidative damage in the pathogenesis of disease. Malondialdehye (MDA) and 4-hydroxynonenal (HNE) are well characterized oxidation products of polyunsaturated fatty acids on low-density lipoprotein (LDL) and adducts of these compounds have been detected by immunological means in atherosclerotic plaque. Thus, we first developed gas chromatography-mass spectrometry assays for the Schiff base adduct of MDA to lysine, the lysine-MDA-lysine diimine cross-link and the Michael addition product of HNE to lysine. Using these assays, we showed that the concentrations of all three compounds increased significantly in LDL during metal-catalysed oxidation in vitro. The concentration of the advanced glycation end-product N epsilon-(carboxymethyl)lysine (CML) also increased during LDL oxidation, while that of its putative carbohydrate precursor the Amadori compound N epsilon-(1-deoxyfructose-1-yl)lysine did not change, demonstrating that CML is a marker of both glycoxidation and lipoxidation reactions. These results suggest that MDA and HNE adducts to lysine residues should serve as biomarkers of lipid modification resulting from lipid peroxidation reactions, while CML may serve as a biomarker of general oxidative stress resulting from both carbohydrate and lipid oxidation reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types. Here, we report that estrogen and estrogen metabolites can cause DNA double-strand breaks (DSB) in estrogen receptora- negative breast cells and that BRCA1 is required to repair these DSBs to prevent metabolite-induced genomic instability.We found that BRCA1 also regulates estrogen metabolism and metabolite-mediated DNA damage by repressing the transcription of estrogen-metabolizing enzymes, such as CYP1A1, in breast cells. Finally, we used a knock-in human cell model with a heterozygous BRCA1 pathogenic mutation to show how BRCA1 haploinsufficiency affects these processes. Our findings provide pivotal new insights into why BRCA1 mutation drives the formation of tumors in estrogen-regulated tissues, despite the general role of BRCA1 in DNA repair in all cell types. © 2014 American Association for Cancer Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive continuum damage mechanics model [1] had been developed to capture the detailed
behaviour of a composite structure under a crushing load. This paper explores some of the difficulties
encountered in the implementation of this model and their mitigation. The use of reduced integration
element and a strain softening model both negatively affect the accuracy and stability of the
simulation. Damage localisation effects demanded an accurate measure of characteristic length. A
robust algorithm for determining the characteristic length was implemented. Testing showed that this
algorithm produced marked improvements over the use of the default characteristic length provided
by Abaqus. Zero-energy or hourglass modes, in reduced integration elements, led to reduced
resistance to bending. This was compounded by the strain softening model, which led to the formation
of elements with little resistance to deformation that could invert if left unchecked. It was shown,
through benchmark testing, that by deleting elements with excess distortions and controlling the mesh
using inbuilt distortion/hourglass controls, these issues can be alleviated. These techniques
contributed significantly to the viability and usability of the damage model.