3 resultados para Formal Methods

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional and non-functional concerns require different programming effort, different techniques and different methodologies when attempting to program efficient parallel/distributed applications. In this work we present a "programmer oriented" methodology based on formal tools that permits reasoning about parallel/distributed program development and refinement. The proposed methodology is semi-formal in that it does not require the exploitation of highly formal tools and techniques, while providing a palatable and effective support to programmers developing parallel/distributed applications, in particular when handling non-functional concerns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Refactoring is the process of changing the structure of a program without changing its behaviour. Refactoring has so far only really been deployed effectively for sequential programs. However, with the increased availability of multicore (and, soon, manycore) systems, refactoring can play an important role in helping both expert and non-expert parallel programmers structure and implement their parallel programs. This paper describes the design of a new refactoring tool that is aimed at increasing the programmability of parallel systems. To motivate our design, we refactor a number of examples in C, C++ and Erlang into good parallel implementations, using a set of formal pattern rewrite rules. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the ParaPhrase project, a new 3-year targeted research project funded under EU Framework 7 Objective 3.4 (Computer Systems), starting in October 2011. ParaPhrase aims to follow a new approach to introducing parallelism using advanced refactoring techniques coupled with high-level parallel design patterns. The refactoring approach will use these design patterns to restructure programs defined as networks of software components into other forms that are more suited to parallel execution. The programmer will be aided by high-level cost information that will be integrated into the refactoring tools. The implementation of these patterns will then use a well-understood algorithmic skeleton approach to achieve good parallelism. A key ParaPhrase design goal is that parallel components are intended to match heterogeneous architectures, defined in terms of CPU/GPU combinations, for example. In order to achieve this, the ParaPhrase approach will map components at link time to the available hardware, and will then re-map them during program execution, taking account of multiple applications, changes in hardware resource availability, the desire to reduce communication costs etc. In this way, we aim to develop a new approach to programming that will be able to produce software that can adapt to dynamic changes in the system environment. Moreover, by using a strong component basis for parallelism, we can achieve potentially significant gains in terms of reducing sharing at a high level of abstraction, and so in reducing or even eliminating the costs that are usually associated with cache management, locking, and synchronisation. © 2013 Springer-Verlag Berlin Heidelberg.