6 resultados para Foreland

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediments of Like Fimon N Italy contain the first continuous archive of the Late Pleistocene environmental and climate history of the southern Alpine foreland We present here the detailed palynological record of the interval between Termination II and the List Glacial Maximum The age-depth model is obtained by radiocarbon dating in the uppermost part of the record Downward we con elated major forest expansion and contraction events to isotopic events in the Greenland Ice core records via a stepping-stone approach involving intermediate correlation to isotopic events dated by TIMS U/Th in Alpine and Apennine stalagmites and to pollen records from mime cores of the Iberian margin Modelled ages obtained by Bayesian analysis of deposition are thoroughly consistent with actual ages with maximum offset of +/- 1700 years Sharp expansion of broad-leaved temperate forest and of sudden water table rise mark the onset of the Last Interglacial after a treeless steppe phase at the end of penultimate glaciation This event is actually a two-step process which matches the two step rise observed in the isotopic record of the nearby Antro del Corchia stalagmite respectively dated to 132 5 +/- 2 5 and 129 +/- 1 5 ka At the interglacial decline mixed oak forests were replaced by oceanic mixed forests the latter persisting further for 7 ka till the end of the Eemian succession Warm-temperate woody species are still abundant at the Eemian end corroborating a steep gradient between central Europe and the Alpine divide at the inception of the last glacial After a stadial phase marked by moderate forest decline a new expansion of warm broad leaved forests interrupted by minor events and followed by mixed oceanic forests can be identified with the north-alpine Saint Germain I The spread of beech during the oceanic phase is a valuable circumalpine marker The subsequent stadial-interstadial succession lacking the telocratic oceanic phase is also consistent with the evidence at the north alpine foreland The Middle Wurmian (full glacial) is marked by persistence of mixed forests dominated by conifers but with significant lime and other broad leaved species A major Arboreal Pollen decrease is observed at modelled age of 38 7 +/- 0 5 ka (larch expansion and last occurrence of lime) which his been related to Heinrich Event 4 The evidence of afforestation persisting south of the Alps throughout most of MIS 3 contrasts with a boreal and continental landscape known for the northern alpine foreland pointing to a sharp rainfall boundary at the Alpine divide and to southern air circulation This is in agreement with the Alpine paleoglaciological record and is supported by the pressure and rainfall patterns designed by mesoscale paleoclimate simulations Strenghtening the continental high pressure during the full glacial triggered cyclogenesis in the middle latitude eastern Europe and orographic rainfall in the eastern Alps and the Balkanic mountains thus allowing forests development at current sea level altitudes (C) 2010 Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may "override" the visible effect of the local environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT

The start of the Upper Wurmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Wurmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re-sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40-year-old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 C-14 ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653-681 m in the clay pit was deposited 34-36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32-33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps.

Glacier collapse occurred soon after 17.46 +/- 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 +/- 0.16 and 15.5 +/- 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small-scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor–relief landforms as wind, weather, water and vegetation impacts on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close-range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss-side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee-side flute. This is consistent with the lee-side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study.