61 resultados para Fog-signals

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FcRI activation of mast cells is thought to involve Lyn and Syk kinases proximal to the receptor and the signaling complex organized by the linker for activation of T cells (LAT). We report here that FcRI also uses a Fyn kinase-dependent pathway that does not require Lyn kinase or the adapter LAT for its initiation, but is necessary for mast cell degranulation. Lyn-deficiency enhanced Fyn-dependent signals and degranulation, but inhibited the calcium response. Fyn-deficiency impaired degranulation, whereas Lyn-mediated signaling and calcium was normal. Thus, FcRI-dependent mast cell degranulation involves cross-talk between Fyn and Lyn kinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous Ca2+-events were imaged in myocytes within intact retinal arterioles (diameter < 40 mu m) freshly isolated from rat eyes. Ca2+-sparks were often observed to spread across the width of these small cells, and could summate to produce prolonged Ca2+-oscillations and contraction. Application of cyclopiazonic acid (20 mu M) transiently increased spark frequency and oscillation amplitude, but inhibited both sparks and oscillations within 60 s. Both ryanodine (100 mu M) and tetracaine (100 mu M) reduced the frequency of sparks and oscillations, while tetracaine also reduced oscillation amplitude. None of these interventions affected spark amplitude. Nifedipine, which blocks store filling independently of any action on L-type Ca2+-channels in these cells, reduced the frequency and amplitude of both sparks and oscillations. Removal of external [Ca2+] (1 mM EGTA) also reduced the frequency of sparks and oscillations but these reductions were slower in onset than those in the presence of tetracaine or cyclopiazonic acid. Cyclopiazonic acid, nifedipine and low external [Ca2+] all reduced SR loading, as indicated by the amplitude of caffeine evoked Ca2+-transients. This study demonstrates for the first time that spontaneous Ca2+-events in small arterioles of the eye result from activation of ryanodine receptors in the SR and suggests that this activation is not tightly coupled to Ca2+-influx. The data also supports a model in which Ca2+-sparks act as building blocks for more prolonged, global Ca2+-signals. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division-with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed -the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca(2+) imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca(2+) buffer loading to demonstrate that Ca(2+) signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca(2+) wave following fertilization. Rather, we show distinct slow localized Ca(2+) elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca(2+) increases. Surprisingly, this Ca(2+) requirement cannot be explained by co-dependence on a single G1/ S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca(2+) elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca(2+)dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.