5 resultados para Flavobacterium columnare G4

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotavirus is the most common etiological cause of acute viral gastroenteritis in infants and young children worldwide, yet its role in the adult population is less well understood. We have recently identified rotavirus as the causative agent of severe diarrhea in adults, specifically in two gastroenteritis outbreaks in separate care for the elderly homes. Strain typing has shown the continued presence of P[8]G1, the emergence of P[8]G9, and the reemergence of P[8]G4. A total of 26 community cases and 6 outbreak cases of rotavirus infection, positive via a molecular screening assay, were subsequently amplified using VP4 and VP7 specific primers (Con2/Con3 and 1A/1B primer sets, respectively). The age range of patients investigated was from

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO2) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C5H4O- with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report, for the first time, extensive biologically-mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (~2%) within the sludge bed and fixed-film biofilms. 4’, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4-1.5 kg COD m-3 d-1 and hydraulic retention times of 8-24 hours, while phosphate removal efficiency ranged from 28-78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12˚C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina Miseq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterised polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.