18 resultados para Fish movement strategies
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The prevailing paradigm for researching sensorimotor synchronisation in humans involves finger tapping and temporal accuracy measures. However, many successful sensorimotor synchronisation actions require not only to be 'in time', but also to be in a predefined spatial position. Reaching this spatial position in many everyday actions often exceeds the average amplitude of a finger movement. The aim of this study is to address how people coordinate their movement to be in the right place at the right time when the scale of the movement varies. Does the scale of the movement and accuracy demands of the movement change the ability to accurately synchronise? To address these questions, a sensorimotor synchronisation task with three different inter-beat intervals, two different movement amplitudes and two different target widths was used. Our experiment demonstrated that people use different timing strategies-employing either a movement strategy (varying movement time) or a waiting strategy (keeping movement time constant) for large-scale movements. Those two strategies were found to be equally successful in terms of temporal accuracy and variability (spread of errors). With longer interval durations (2.5 and 3.5 s), variability of sensorimotor synchronisation performance increased (measured as the spread of errors). Analysing the data using the Vorberg and Wing (Handbook of perception and action. Academic Press, New York, pp 181-262, 1996) model shows a need to develop further existing timing models of sensorimotor synchronisation so that they could apply to large-scale movements, where different movement strategies naturally emerge.
Resumo:
An organism’s home range dictates the spatial scale on which important processes occur (e.g. competition and predation) and directly affects the relationship between individual fitness and local habitat quality. Many reef fish species have very restricted home ranges after settlement and, here, we quantify home-range size in juveniles of a widespread and abundant reef fish in New Zealand, the common triplefin (Forsterygion lapillum). We conducted visual observations on 49 juveniles (mean size = 35-mm total length) within the Wellington harbour, New Zealand. Home ranges were extremely small, 0.053 m2 ± 0.029 (mean ± s.d.) and were unaffected by adult density, body size or substrate composition. A regression tree indicated that home-range size sharply decreased ~4.5 juveniles m–2 and a linear mixed model confirmed that home-range sizes in high-density areas (>4.5 juveniles m–2) were significantly smaller (34%) than those in low-density areas (after accounting for a significant effect of fish movement on our home-range estimates). Our results suggest that conspecific density may have negative and non-linear effects on home-range size, which could shape the spatial distribution of juveniles within a population, as well as influence individual fitness across local density gradients.
Footprints in the sand: a persistent spatial impression of fishing in a mobile groundfish assemblage
Resumo:
Fishing is well known to curtail the size distribution of fish populations. This paper reports the discovery of small-scale spatial patterns in length appearing in several exploited species of Celtic Sea demersal 'groundfish'. These patterns match well with spatial distributions of fishing activity, estimated from vessel monitoring records taken over a period of 6 years, suggesting that this 'mobile' fish community retains a persistent impression of local-scale fishing pressure. An individual random-walk model of fish movement best matched these exploitation 'footprints' with individual movement rates set to <35 km per year. We propose that Celtic Sea groundfish may have surprisingly low movement rates for much of the year, such that fishing impact is spatially heterogeneous and related to local fishing intensity.
Resumo:
An optimal search theory, the so-called Levy-flight foraging hypothesis(1), predicts that predators should adopt search strategies known as Levy flights where prey is sparse and distributed unpredictably, but that Brownian movement is sufficiently efficient for locating abundant prey(2-4). Empirical studies have generated controversy because the accuracy of statistical methods that have been used to identify Levy behaviour has recently been questioned(5,6). Consequently, whether foragers exhibit Levy flights in the wild remains unclear. Crucially, moreover, it has not been tested whether observed movement patterns across natural landscapes having different expected resource distributions conform to the theory's central predictions. Here we use maximum-likelihood methods to test for Levy patterns in relation to environmental gradients in the largest animal movement data set assembled for this purpose. Strong support was found for Levy search patterns across 14 species of open-ocean predatory fish (sharks, tuna, billfish and ocean sunfish), with some individuals switching between Levy and Brownian movement as they traversed different habitat types. We tested the spatial occurrence of these two principal patterns and found Levy behaviour to be associated with less productive waters (sparser prey) and Brownian movements to be associated with productive shelf or convergence-front habitats (abundant prey). These results are consistent with the Levy-flight foraging hypothesis(1,7), supporting the contention(8,9) that organism search strategies naturally evolved in such a way that they exploit optimal Levy patterns.
Resumo:
To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD) could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling), while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau) coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.
Resumo:
The purpose of this study was to test whether a constant bearing angle strategy could account for the displacement regulations produced by a moving observer when attempting to intercept a ball following a curvilinear path. The participants were asked to walk through a virtual environment and to change, if (deemed) necessary, their walking speed so as to intercept a moving ball that followed either a rectilinear or a curvilinear path. The results showed that ball path curvature did indeed influence the participants' displacement kinematics in a way that was predicted by adherence to a constant bearing angle strategy mode of control. Velocity modifications were found to be proportional to the magnitude of target curvature with opposing curvatures giving rise to mirror displacement velocity changes. The role of prospective strategies in the control of interceptive action is discussed
Diel variation in egg-laying by the freshwater fish louse Argulus foliaceus (Crustacea : Branchiura)
Resumo:
Removal of deposited eggs could be a useful control strategy for the damaging fish ectoparasite Argulus foliaceus, but focused control requires knowledge of egg-laying patterns. Here, we investigated diel changes in the egg-laying behaviour of a natural population of A. foliaceus. Data were collected from 17-28 May 2004. Days were divided into 3 time periods: 06:00-14:00, 14:00-22:00 and 22:00-06:00 h. Significantly more egg clutches were laid from 06:00-14:00 h than during the other 2 time periods, which were not significantly different from each other. Significantly more egg clutches per hour were laid during hours of daylight as compared to hours of darkness. Significantly more egg clutches were laid in the top 1 m of the water column than at the bottom, and this was consistent throughout all 3 time periods. It is suggested that the increase in egg-laying activity during daylight hours may be due to a higher motivation to search for hosts during the night and an increased ability to locate silhouetted egg-laying sites during the day. These data can provide information useful for egg removal and control strategies.
Resumo:
Older adults who undertake resistance training are typically seeking to maintain or increase their muscular strength with the goal of preserving or improving their functional capabilities. The extent to which resistance training adaptations lead to improved performance on tasks of everyday living is not particularly well understood. Indeed, studies examining changes in functional task performance experienced by older adults following periods of resistance training have produced equivocal findings. A clear understanding of the principles governing the transfer of resistance training adaptations is therefore critical in seeking to optimize the prescription of training regimes that have as their aim the maintenance and improvement of functional movement capacities in older adults. The degenerative processes that occur in the aging motor system are likely to influence heavily any adaptations to resistance training and the subsequent transfer to functional task performance. The resulting characteristics of motor behavior, such as the substantial decline in the rate of force development and the decreased steadiness of force production, may entail that specialized resistance training strategies are necessary to maximize the benefits for older adults. In this review, we summarize the alterations in the neuromuscular system that are responsible for the declines in strength, power, and force control, and the subsequent deterioration in the everyday movement capabilities of older adults. We examine the literature concerning the neural adaptations that older adults experience in response to resistance training, and consider the readiness with which these adaptations will improve the functional movement capabilities of older adults.
Resumo:
Summary
1: Managing populations of predators and their prey to achieve conservation or resource management goals is usually technically challenging and frequently socially controversial. This is true even in the simplest ecosystems but can be made much worse when predator–prey relationships are in?uenced by complex interactions, such as biological invasions, population trends or animal movements.
2: Lough Neagh in Northern Ireland is a European stronghold for pollan Coregonus autumnalis, a coregonine ?sh and for river lampreyLampetra ?uviatilis, which feeds parasitically as an adult. Both species are of high conservation importance. Lampreys are known to consume pollan but detailed knowledge of their interactions is scant. While pollan is well known to be a landlocked species in Ireland, the life cycle of normally anadromous river lamprey in Lough Neagh has been unclear. The Lough is also a highly perturbed ecosystem, supporting several invasive, non-native ?sh species that have the potential to in?uence lamprey–pollan interactions.
3: We applied stable isotope techniques to resolve both the movement patterns of lamprey and trophic interactions in this complex community. Recognizing that stable isotope studies are often hampered by high-levels of variability and uncertainty in the systems of interest, we employed novel Bayesian mixing models, which incorporate variability and uncertainty.
4: Stable isotope analyses identi?ed troutSalmo trutta and non-native breamAbramis brama as the main items in lamprey diet. Pollan only represented a major food source for lamprey between May and July.
5: Stable isotope ratios of carbon in tissues from 71 adult lamprey showed no evidence of marine carbon sources, strongly suggesting that Lough Neagh is host to a highly unusual, nonanadromous freshwater population. This ?nding marks out the Lough’s lamprey population as of particular scienti?c interest and enhances the conservation signi?cance of this feature of the Lough.
6: Synthesis and applications.Our Bayesian isotopic mixing models illustrate an unusual pattern of animal movement, enhancing conservation interest in an already threatened population. We have also revealed a complex relationship between lamprey and their food species that is suggestive of hyperpredation, whereby non-native species may sustain high lamprey populations that may in turn be detrimental to native pollan.Long-term conservation of lamprey and pollan in this system is likely to require management intervention, but in light of this exceptional complexity, no simple management options are currently supported. Conservation plans will require better characterization ofpopulation-level interactions and simulation modelling of interventions. More generally, our study demonstrates the importance of considering a full range of possible trophic interactions, particularly in complex ecosystems, and highlights Bayesian isotopic mixing models as powerful tools in resolving trophic relationships.
Key-words: Bayesian, conservation dilemma, Coregonus autumnalis, hyperpredation, Lampetra ?uviatilis, pollan, potamodromous, River lamprey, stable isotope analysis in R, stable isotope
Resumo:
Carbon stable-isotope analysis showed that individual brown trout Salmo trutta in Loch Lomond adopted strategies intermediate to that of freshwater residency or anadromy, suggesting either repeated movement between freshwater and marine environments, or estuarine residency. Carbon stable-isotope (delta C-13) values from Loch Lomond brown trout muscle tissue ranged from those indicative of assimilation of purely freshwater-derived carbon to those reflecting significant utilization of marine-derived carbon. A single isotope, two-source mixing model indicated that, on average, marine C made a 33% contribution to the muscle tissue C of Loch Lomond brown trout. Nitrogen stable isotope, delta N-15, but not delta C-13 was correlated with fork length suggesting that larger fish were feeding at a higher trophic level but that marine feeding was not indicated by larger body size. These results are discussed with reference to migration patterns in other species. (c) 2008 The Authors Journal compilation (c) 2008 The Fisheries Society of the British Isles.
Resumo:
A key to success in many sports stems from the ability to anticipate what a player is going to do next. In sporting duels such as a 1 vs. 1 in rugby, the attacker can try and beat the defender by using deceptive movement. Those strategies involve an evolution of the centre of mass (COM) in the medio-lateral plane, from a minimal state to maximal displacement just before the final reorientation. The aim of this work is to consider this displacement as a motion-gap, as outlined in Tau theory, as a potential variable that may specify deceptive movement and as a means of comparing anticipatory performance between mid-level players and novices in rugby. Using a virtual reality set-up, 8 mid-level rugby players (ML) and 8 novices (NOV) observed deceptive (DM) and non-deceptive movements (NDM). The global framework used an occlusion time paradigm with four occlusion times. Participants had to judge the final direction of the attacker after the different cuts-off. For each movement and at each occlusion time, we coupled the ability to predict the good final direction with the value of the COM displacement in the medio-lateral (COM M/L) plane or with the Tau of this parameter (Tau COM). Firstly, results show that the Tau COM is a more predictive optical variable than the simple COM M/L. Secondly, this optical variable Tau COM is used by both groups, and finally, with a specific methodology we showed that mid-level players have significantly better anticipatory ability than the novice group.
Resumo:
Satellite-linked archival transmitters were used to record the movements of three ocean sunfish (Mola mola) in the North East Atlantic. Patterns of depth use and temperature experienced by individual fish were integrated into 4-hour intervals throughout the tracking period and relayed via the Argos system. Data were recorded for 42, 90 and 54 days respectively from the three fish. The first two were tagged off southern Portugal at the end of February 2007 and travelled principally northward, while the third fish was tagged off west Ireland in August 2007 and travelled southward. These patterns are consistent with seasonal migration of ocean sunfish to high latitudes and their Subsequent return south. Maximum depths recorded by the three fish were 432 m, 472 m and 320 m respectively. All three individuals showed a diel pattern in depth use, occurring deeper during the day and shallower at night, a pattern consistent with sunfish tracking normally vertically migrating prey. Sunfish sometimes remained continuously at deeper (>200 m) depths during the day, but at other times they showed extensive movement through the water column typically travelling between their maximum depth and the surface within each 4-h period. The overall pattern to emerge was that ocean sunfish travel extensively in both horizontal and vertical dimensions, presumably in search of their patchily-distributed jellyfish prey.
Resumo:
Current clinical, laboratory or radiological parameters cannot accurately diagnose or predict disease outcomes in a range of autoimmune disorders. Biomarkers which can diagnose at an earlier time point, predict outcome or help guide therapeutic strategies in autoimmune diseases could improve clinical management of this broad group of debilitating disorders. Additionally, there is a growing need for a deeper understanding of multi-factorial autoimmune disorders. Proteomic platforms offering a multiplex approach are more likely to reflect the complexity of autoimmune disease processes. Findings from proteomic based studies of three distinct autoimmune diseases are presented and strategies compared. It is the authors' view that such approaches are likely to be fruitful in the movement of autoimmune disease treatment away from reactive decisions and towards a preventative stand point.