26 resultados para Finite Queueing Systems
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.
Resumo:
Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and sufficient condition that is based on classical correlations.
Resumo:
Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.
Resumo:
We present two strategies to enhance the dynamical entanglement transfer from continuous-variable (CV) to finite-dimensional systems by employing multiple qubits. First, we consider the entanglement transfer to a composite finite-dimensional system of many qubits simultaneously interacting with a bipartite CV field. We show that, considering realistic conditions in the generation of CV entanglement, a small number of qubits resonantly coupled to the CV system are sufficient for an almost complete dynamical transfer of the entanglement. Our analysis also sheds further light on the transition between the microscopic and macroscopic behaviors of composite finite-dimensional systems coupled to bosonic fields (like atomic clouds interacting with light). Furthermore, we present a protocol based on sequential interactions of the CV system with some ancillary qubit systems and on subsequent measurements, allowing us to probabilistically convert CV entanglement into "almost-perfect" Bell pairs of two qubits. Our proposals are suited for realizations in various experimental settings, ranging from cavity-QED to cavity-integrated superconducting devices.
Resumo:
The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We study the long-range quantum correlations in the anisotropic XY model. By first examining the thermodynamic limit, we show that employing the quantum discord as a figure of merit allows one to capture the main features of the model at zero temperature. Furthermore, by considering suitably large site separations we find that these correlations obey a simple scaling behavior for finite temperatures, allowing for efficient estimation of the critical point. We also address ground-state factorization of this model by explicitly considering finite-size systems, showing its relation to the energy spectrum and explaining the persistence of the phenomenon at finite temperatures. Finally, we compute the fidelity between finite and infinite systems in order to show that remarkably small system sizes can closely approximate the thermodynamic limit.
Resumo:
We describe some unsolved problems of current interest; these involve quantum critical points in
ferroelectrics and problems which are not amenable to the usual density functional theory, nor to
classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–
Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter)
because they are dominated by finite aperiodic boundary conditions.
Resumo:
Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.
Resumo:
We analyse a picture of transport in which two large but finite charged electrodes discharge across a nanoscale junction. We identify a functional whose minimization, within the space of all bound many-body wavefunctions, defines an instantaneous steady state. We also discuss factors that favour the onset of steady-state conduction in such systems, make a connection with the notion of entropy, and suggest a novel source of steady-state noise. Finally, we prove that the true many-body total current in this closed system is given exactly by the one-electron total current, obtained from time-dependent density-functional theory.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
The first analysis and synthesis equations for the newly introduced inverse Class-E amplifier when operated with a finite d.c. blocking capacitance and a finite d.c.-feed inductance are presented in the paper. Closed-form design equations are derived in order to establish the circuit component values required for optimum synthesis. Excellent agreement between numerical simulation results and theoretical prediction is obtained. It is shown that drain efficiency approaching 100 at a pre-specified output power level can be achieved as zero-current switching and zero-current derivative conditions are simultaneously satisfied. The proposed analysis offers the prospect for realistic MMIC implementation.
Resumo:
Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.
Resumo:
A recently introduced power-combining scheme for a Class-E amplifier is, for the first time, experimentally validated in this paper. A small value choke of 2.2 nH was used to substitute for the massive dc-feed inductance required in the classic Class-E circuit. The power-combining amplifier presented, which operates from a 3.2-V dc supply voltage, is shown to be able to deliver a 24-dBm output power and a 9.5-dB gain, with 64% drain efficiency and 57% power-added efficiency at 2.4 GHz. The power amplifier exhibits a 350-MHz bandwidth within which a drain efficiency that is better than 60% and an output power that is higher than 22 dBm were measured. In addition, by adopting three-harmonic termination strategy, excellent second-and third-harmonic suppression levels of 50 and 46 dBc, respectively, were obtained. The complete design cycle from analysis through fabrication to characterization is explained. © 2010 IEEE.