46 resultados para Finite Linear Sub-Variety
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Aircraft fuselages are complex assemblies of thousands of components and as a result simulation models are highly idealised. In the typical design process, a coarse FE model is used to determine loads within the structure. The size of the model and number of load cases necessitates that only linear static behaviour is considered. This paper reports on the development of a modelling approach to increase the accuracy of the global model, accounting for variations in stiffness due to non-linear structural behaviour. The strategy is based on representing a fuselage sub-section with a single non-linear element. Large portions of fuselage structure are represented by connecting these non-linear elements together to form a framework. The non-linear models are very efficient, reducing computational time significantly
Resumo:
A single layer, frequency selective surface based, sub-millimeter wave transmission polarizer is presented that converts incident slant linear 45° polarization into circular polarization upon transmission. The polarization convertor consists of a 30 mm diameter 10 thick silicon reinforced metalized screen containing 2700 resonator cells and perforated with nested split ring slot apertures. The screen was designed and optimized using CST Microwave Studio and predictions were validated experimentally by transmission measurements over the 250-365 GHz frequency range. This frequency range is used for remote environmental monitoring and 325 GHz represents a molecular emission line for H2O. The results obtained show good agreement between measured and modeled predictions. The measured 3 dB axial ratio bandwidth was 11.75%, measured minimum Axial Ratio was 0.19 dB and the measured insertion loss of the single layer screen was 3.38 dB
Resumo:
This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.
Resumo:
Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.
Resumo:
A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.
Resumo:
The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.
Resumo:
The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.
Resumo:
We construct $x^0$ in ${\Bbb R}^{\Bbb N}$ and a row-finite matrix $T=\{T_{i,j}(t)\}_{i,j\in\N}$ of polynomials of one real variable $t$ such that the Cauchy problem $\dot x(t)=T_tx(t)$, $x(0)=x^0$ in the Fr\'echet space $\R^\N$ has no solutions. We also construct a row-finite matrix $A=\{A_{i,j}(t)\}_{i,j\in\N}$ of $C^\infty(\R)$ functions such that the Cauchy problem $\dot x(t)=A_tx(t)$, $x(0)=x^0$ in ${\Bbb R}^{\Bbb N}$ has no solutions for any $x^0\in{\Bbb R}^{\Bbb N}\setminus\{0\}$. We provide some sufficient condition of solvability and of unique solvability for linear ordinary differential equations $\dot x(t)=T_tx(t)$ with matrix elements $T_{i,j}(t)$ analytically dependent on $t$.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.