29 resultados para Fiber Strain Sensors

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Special issue on Sensor Systems for Structural Health Monitoring Abstract—This study addresses the direct calibration of optical fiber strain sensors used for structural monitoring and is carried out in situ. The behavior of fiber-Bragg-grating-based sensor systems when attached to metal bars, in a manner representative of their use as reinforcement bars in structures, was examined and their response calibrated. To ensure the validity of the measurements,this was done using an extensometer with a further calibrationagainst the response of electrical resistance strain gauges, often conventionally used, for comparison. The results show a repeatable calibration generating a suitable geometric factor of extension to strain for these sensors, to enable accurate strain data to be obtained when the fiber-optic sensor system is in use in structural monitoring applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and implementation of a novel optical fiber temperature compensated relative humidity (RH) sensor device, based on fiber Bragg gratings (FBGs) and developed specifically for monitoring water ingress leading to the deterioration of building stone. The performance of the sensor thus created, together with that of conventional sensors, was first assessed in the laboratory where they were characterized under experimental conditions of controlled wetting and drying cycles of limestone blocks, before being employed “in-the-field” to monitor actual building stone in a specially built wall. Although a new construction, this was built specifically using conservation methods similar to those employed in past centuries, to allow an accurate simulation of processes occurring with wetting and drying in the historic walls in the University of Oxford.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the reliability and thus the suitability of optical fibre strain sensors for surface strain measurement in concrete structures was investigated. Two different configurations of optical strain sensors were used each having different mountings making them suitable for different uses in various structures. Due to the very limited time available to install the sensors and take result, commercially packaged sensors were used. In the tests carried out each sensor was mounted onto a concrete beam which was then subjected to a range of known and calibrated loadings. The performance of the optical strain sensors thus evaluated was compared with the results of conventional techniques. This comparison allows for selecting the best performing combination of sensor/mounting, i.e. long-gauge sensor with mounts bolted to threaded rods glued into the concrete for use in future work in a field test where a limited time window was available for installation, testing and post-test demounting. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been over 3000 bridge weigh-in-motion (B-WIM) installations in 25 countries worldwide, this has led vast improvements in post processing of B-WIM systems since its introduction in the 1970’s. This paper introduces a new low-power B-WIM system using fibre optic sensors (FOS). The system consisted of a series of FOS which were attached to the soffit of an existing integral bridge with a single span of 19m. The site selection criteria and full installation process has been detailed in the paper. A method of calibration was adopted using live traffic at the bridge site and based on this calibration the accuracy of the system was determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problems of effective in situ measurement of the real-time strain for bridge weigh in motion in reinforced concrete bridge structures through the use of optical fiber sensor systems. By undertaking a series of tests, coupled with dynamic loading, the performance of fiber Bragg grating-based sensor systems with various amplification techniques were investigated. In recent years, structural health monitoring (SHM) systems have been developed to monitor bridge deterioration, to assess load levels and hence extend bridge life and safety. Conventional SHM systems, based on measuring strain, can be used to improve knowledge of the bridge's capacity to resist loads but generally give no information on the causes of any increase in stresses. Therefore, it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, adhesives layer, and strain sensor. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors cannot capture accurate strains and/or peak strains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the level of dynamics, as described by the Assessment Dynamic Ratio (ADR), is measured directly through a field test on a bridge in the United Kingdom. The bridge was instrumented using fiber optic strain sensors and piezo-polymer weigh-in-motion sensors were installed in the pavement on the approach road. Field measurements of static and static-plus-dynamic strains were taken over 45 days. The results show that, while dynamic amplification is large for many loading events, these tend not to be the critical events. ADR, the allowance that should be made for dynamics in an assessment of safety, is small.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ageing and deterioration of infrastructure is a challenge facing transport authorities. In
particular, there is a need for increased bridge monitoring in order to provide adequate
maintenance and to guarantee acceptable levels of transport safety. The Intelligent
Infrastructure group at Queens University Belfast (QUB) are working on a number of aspects
of infrastructure monitoring and this paper presents summarised results from three distinct
monitoring projects carried out by this group. Firstly the findings from a project on next
generation Bridge Weight in Motion (B-WIM) are reported, this includes full scale field testing
using fibre optic strain sensors. Secondly, results from early phase testing of a computer
vision system for bridge deflection monitoring are reported on. This research seeks to exploit
recent advances in image processing technology with a view to developing contactless
bridge monitoring approaches. Considering the logistical difficulty of installing sensors on a
‘live’ bridge, contactless monitoring has some inherent advantages over conventional
contact based sensing systems. Finally the last section of the paper presents some recent
findings on drive by bridge monitoring. In practice a drive-by monitoring system will likely
require GPS to allow the response of a given bridge to be identified; this study looks at the
feasibility of using low-cost GPS sensors for this purpose, via field trials. The three topics
outlined above cover a spectrum of SHM approaches namely, wired monitoring, contactless
monitoring and drive by monitoring

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.