3 resultados para Ferro carbonila
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T-C), temperature of maximum dielectric constant (T-m) and temperature of the onset of reversible polarization (T-ferro) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba0.5Sr0.5)TiO3 thin films on SrRuO3 electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient.
Resumo:
Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The distribution of eogenetic alterations in shoreface-offshore and coarse-grained deltaic, calcarenite to hybrid arenites of the Mheiherrat Formation (lower Rudeis), Early Miocene, the Gulf of Suez, Egypt) can be constrained within a sequence stratigraphic framework. The bioclast-rich, shoreface (trangressive systems tract; TST) and shoreface (highstand systems tract; HST) arenites, particularly those below the parasequence boundaries and maximum flooding surface, are cemented by grain-coating microcrystalline, circumgranular isopacheous acicular and columnar, and coarse-crystalline calcite (δ18OVPDB = -3.6 to -0.3 ‰; δ13CVPDB = -2.3 to -0.7 ‰), non-Ferro an dolomite (δ18OVPDB = -3.9 to +0.9‰; δ13CVPDB = -2.5 ‰ to -0.7 ‰), and pyrite. Zeolite, palygorskite and gypsum occur in the HST shoreface arenites, being enhanced by aird climatic condations. The coarse-grained deltaic LST deposits are pervasively cemented by coarse-crystalline, pore-filling calcite and small amounts of microcrystalline calcite (δ18OVPDB = -4.4 to -2.3 ‰; δ13CVPDB = -2.8 to -1.3 ‰) and non-ferroan dolomite (δ18OVPDB = -4.8 to -2.5 ‰; δ13CVPDB = -3.3 to -1.5 ‰). Thus, this study demonstrates that changes in pore-water chemistry, which induced changes in the texture, composition and extent of cementation in the Miocene arenites was controlled by changes in the relative sea level and by the paleo-climatic conditions during deposition of the HST arenites.
Sequence stratigraphy related distribution of diagenetic alterations In Miocene deltaic and shoreface arenites, the Suez Rift, EGYPT.. Available from: https://www.researchgate.net/publication/264545153_Sequence_stratigraphy_related_distribution_of_diagenetic_alterations_In_Miocene_deltaic_and_shoreface_arenites_the_Suez_Rift_EGYPT [accessed Apr 15, 2015].