91 resultados para Feature taxonomy
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper provides a summary of our studies on robust speech recognition based on a new statistical approach – the probabilistic union model. We consider speech recognition given that part of the acoustic features may be corrupted by noise. The union model is a method for basing the recognition on the clean part of the features, thereby reducing the effect of the noise on recognition. To this end, the union model is similar to the missing feature method. However, the two methods achieve this end through different routes. The missing feature method usually requires the identity of the noisy data for noise removal, while the union model combines the local features based on the union of random events, to reduce the dependence of the model on information about the noise. We previously investigated the applications of the union model to speech recognition involving unknown partial corruption in frequency band, in time duration, and in feature streams. Additionally, a combination of the union model with conventional noise-reduction techniques was studied, as a means of dealing with a mixture of known or trainable noise and unknown unexpected noise. In this paper, a unified review, in the context of dealing with unknown partial feature corruption, is provided into each of these applications, giving the appropriate theory and implementation algorithms, along with an experimental evaluation.
Resumo:
Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.
Resumo:
The use of image processing techniques to assess the performance of airport landing lighting using images of it collected from an aircraft-mounted camera is documented. In order to assess the performance of the lighting, it is necessary to uniquely identify each luminaire within an image and then track the luminaires through the entire sequence and store the relevant information for each luminaire, that is, the total number of pixels that each luminaire covers and the total grey level of these pixels. This pixel grey level can then be used for performance assessment. The authors propose a robust model-based (MB) featurematching technique by which the performance is assessed. The development of this matching technique is the key to the automated performance assessment of airport lighting. The MB matching technique utilises projective geometry in addition to accurate template of the 3D model of a landing-lighting system. The template is projected onto the image data and an optimum match found, using nonlinear least-squares optimisation. The MB matching software is compared with standard feature extraction and tracking techniques known within the community, these being the Kanade–Lucus–Tomasi (KLT) and scaleinvariant feature transform (SIFT) techniques. The new MB matching technique compares favourably with the SIFT and KLT feature-tracking alternatives. As such, it provides a solid foundation to achieve the central aim of this research which is to automatically assess the performance of airport lighting.
Resumo:
This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.