19 resultados para FORAGE
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Many insect species vary in their degree of foraging specialisation, with many bee species considered polyphagic (polylectic). Wild, non-managed bee species vary in their conservation status, and species-specific biological traits such as foraging specialisation may play an important role in determining variance in population declines. Current agri-environment schemes (AESs) prescribe the introduction of flower seed mixes for agricultural systems to aid the conservation of wild bees. However, the extent to which flower combinations adequately meet bee foraging requirements is poorly known. We quantitatively assessed pollen use and selectivity using two statistical approaches: Bailey's Intervals and Compositional Analysis, in an examplar species, a purportedly polylectic and rare bee, Colletes floralis, across 7 sites through detailed analysis of bee scopal pollen loads and flower abundance. Both approaches provided good congruence, but Compositional Analysis was more robust to small sample sizes. We advocate its use for the quantitative determination of foraging behaviour and dietary preference. Although C. floralis is polylectic, it showed a clear dietary preference for plants within the family Apiaceae. Where Apiaceae was uncommon, the species exploited alternative resources. Other plant families, such as the Apiaceae, could be included, or have their proportion increased in AES seed mixes, to aid the management of C. floralis and potentially other wild solitary bees of conservation concern. © 2011 The Authors. Insect Conservation and Diversity © 2011 The Royal Entomological Society.
Resumo:
A size and trait-based marine community model was used to investigate interactions, with potential implications for yields, when a fishery targeting forage fish species (whose main adult diet is zooplankton) co-occurs with a fishery targeting larger-sized predator species. Predicted effects on the size structure of the fish community, growth and recruitment of fishes, and yield from the fisheries were used to identify management trade-offs among the different fisheries. Results showed that moderate fishing on forage fishes imposed only small effects on predator fisheries, whereas predator fisheries could enhance yield from forage fisheries under some circumstances.
Resumo:
Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.
Resumo:
Subterranean mammals (those that live and forage underground) inhabit a challenging microenvironment, with high levels of carbon dioxide and low levels of oxygen. Consequently, they have evolved specialised morphological and physiological adaptations. For small mammals that inhabit high altitudes, the effects of cold are compounded by low oxygen partial pressures. Hence, subterranean mammals living at high altitudes are faced with a uniquely demanding physiological environment, which presumably necessitates additional physiological adjustments. We examined the thermoregulatory capabilities of two populations of Lesotho mole-rat Cryptomys hottentotus mahali that inhabit a 'low' (1600 in) and a 'high' (3200 m) altitude. Mole-rats from the high altitude had a lower temperature of the lower critical point, a broader thermoneutral zone, a lower thermal conductance and greater regulatory non-shivering thermogenesis than animals from the lower altitude. However, minimum resting metabolic rate values were not significantly different between the populations and were low compared with allometric predictions. We suggest that thermoregulatory costs may in part be met by animals maintaining a low resting metabolic rate. High-altitude animals may adjust to their cooler, more oxygen-deficient environment by having an increased non-shivering thermogenesis whilst maintaining low thermal conductance. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
1. Free-living animals make complex decisions associated with optimizing energy and nutrient intake. In environments where ambient temperatures fall below the thermoneutral zone, homeotherms must choose whether or not to forage, how long and what to forage for, and whether or not to perform activities that conserve energy.
Resumo:
Winter is an energetically stressful period for small mammals as increasing demands for thermoregulation are often coupled with shortages of food supply. In sub-tropical savannah, Hottentot golden moles (Ambysomus hottentottus longiceps) forage throughout the year and for lone periods of each day. This may enable them to acquire sufficient resources from an insectivorous prey base that is both widely dispersed and energetically costly to obtain. However, they also inhabit much cooler regions; how their energy budgets are managed in these areas is unknown. We measured the daily energy expenditure (DEE), resting metabolic rate (RMR) and water turnover (WTO) of free-living golden moles during both winter and summer at high altitude (1500 m). We used measurements of deuterium dilution to estimate body fat during these two periods. DEE, WTO and body mass did not differ significantly between seasons. However, RMR values were higher during the winter than the summer and, in the latter case were also lower than allometric predictions. Body fat was also higher during the winter. Calculations show that during the winter they may restrict activity to shorter, more intense periods. This, together with an increase in thermal insulation, might enable them to survive the cold. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
While females are traditionally thought to invest more time and energy into parental care than males, males often invest more resources into searching and displaying for mates, obtaining mates and in male-male conflict. Solitary subterranean mammals perform these activities in a particularly challenging niche, necessitating energetically expensive burrowing to both search for mates and forage for food. This restriction presumably affects males more than females as the former are thought to dig longer tunnels that cover greater distances to search for females. We excavated burrow systems of male and female Cape dune mole rats Bathyergus suillus the, largest truly subterranean mammal, to investigate whether male burrows differ from those of females in ways that reflect mate searching by males. We consider burrow architecture (length, internal dimensions, fractal dimension of tunnel systems, number of nesting chambers and mole mounds on the surface) in relation to mating strategy. Males excavated significantly longer burrow systems with higher fractal dimensions and larger burrow areas than females. Male burrow systems were also significantly farther from one another than females were from other females' burrow systems. However, no sex differences were evident in tunnel cross-sectional area, mass of soil excavated per mound, number of mounds produced per unit burrow length or mass of soil excavated per burrow system. Hence, while males may use their habitat differently from females, they do not appear to differ in the dimensions of the tunnels they create. Thus, exploration and use of the habitat differs between the sexes, which may be a consequence of sex differences in mating behaviour and greater demands for food.
Resumo:
Over recent years there have been substantial efforts to record and interpret the post-nesting movements of leatherback turtles (Dermochelys coriacea) breeding in tropical regions. Less well documented are the movements undertaken by individual turtles during the breeding season itself, or more specifically between sequential nesting events. Such movements are of interest for two reasons: (1) gravid female leatherbacks may range extensively into the territorial waters and nesting beaches of neighbouring countries, raising questions for conservationists and population ecologists; and (2) the magnitude of movements themselves help elucidate underlying reproductive strategies (e.g. whether to rest near to the nesting or forage extensively). Here, satellite relay data loggers are used (SRDLs) to detail the movements and behaviour of two female leatherback turtles throughout three consecutive inter-nesting intervals in the Commonwealth of Dominica, West Indies. Both near-shore residence and extensive inter-nesting movements were recorded, contrasting previous studies, with movements away from the nesting beach increasing towards the end of the nesting season. Using this behavioural study as a backdrop, the suitability of attaching satellite transmitters directly to the carapace was additionally explored as an alternative approach to conventional harness deployments. Specifically, the principal aims were to (1) gather empirical data on speed of travel and (2) assess dive performance (aerobic dive limit) to enable comparisons with turtles previously fitted with harnesses elsewhere in the Caribbean (n = 6 turtles; Grenada, WI). This produced mixed results with animals bearing directly attached transmitters travelling significantly faster (55.21 km day(-1): SD 6.68) than harnessed individuals (39.80 km day(-1); SD 6.19); whilst no discernable difference in dive performance could be found between the two groups of study animals. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Exploitation of intertidal Zostera spp by Pale-bellied Brent geese Branta bernicla hrota in Strangford Lough, Co. Down, was studied with respect to feeding method employed, plant parts exploited, the quality of the forage, and assimilation efficiency. Most Brent geese feeding activity involved digging behaviour, which, along with faecal analyses, indicated that birds were exploiting above (shoot) and below ground portions (rhizome) of the food plant. Nutritional information indicated that while rhizome was lower in overall energy, it contained more accessible energy in the form of water soluble carbohydrate and was lower in indigestible fibre than shoot. Feeding experiments indicated that Brent geese feeding on whole plants of Zostera noltii achieved 43% assimilation efficiency. Dig feeding of intertidal Zostera spp by Brent geese is likely to significantly increase the amount and quality of the forage available. Why dig feeding is not employed on all intertidal systems, and its potential effects on the food plants are discussed.
Resumo:
The decision on when to emerge from the safety of a roost and forage for prey is thought to be a result of the trade off between peak insect abundance and predation pressure for bats. In this study we show that the velvety free-tailed bat Molossus molossus emerges just after sunset and just before sunrise for very short foraging bouts (average 82.2 min foraging per night). Contrary to previous studies, bats remain inactive in their roost between activity patterns. Activity was measured over two complete lunar cycles and there was no indication that phase of the moon had an influence on emergence time or the numbers of bats that emerged from the roost. This data suggests that M. molossus represents an example of an aerial hawking bat whose foraging behaviour is in fact adapted to the compromise between the need to exploit highest prey availability and the need to avoid predation.
Resumo:
A study was undertaken to examine a range of sample preparation and near infrared reflectance spectroscopy (NIPS) methodologies, using undried samples, for predicting organic matter digestibility (OMD g kg(-1)) and ad libitum intake (g kg(-1) W-0.75) of grass silages. A total of eight sample preparation/NIRS scanning methods were examined involving three extents of silage comminution, two liquid extracts and scanning via either external probe (1100-2200 nm) or internal cell (1100-2500 nm). The spectral data (log 1/R) for each of the eight methods were examined by three regression techniques each with a range of data transformations. The 136 silages used in the study were obtained from farms across Northern Ireland, over a two year period, and had in vivo OMD (sheep) and ad libitum intake (cattle) determined under uniform conditions. In the comparisons of the eight sample preparation/scanning methods, and the differing mathematical treatments of the spectral data, the sample population was divided into calibration (n = 91) and validation (n = 45) sets. The standard error of performance (SEP) on the validation set was used in comparisons of prediction accuracy. Across all 8 sample preparation/scanning methods, the modified partial least squares (MPLS) technique, generally minimized SEP's for both OMD and intake. The accuracy of prediction also increased with degree of comminution of the forage and with scanning by internal cell rather than external probe. The system providing the lowest SEP used the MPLS regression technique on spectra from the finely milled material scanned through the internal cell. This resulted in SEP and R-2 (variance accounted for in validation set) values of 24 (g/kg OM) and 0.88 (OMD) and 5.37 (g/kg W-0.75) and 0.77 (intake) respectively. These data indicate that with appropriate techniques NIRS scanning of undried samples of grass silage can produce predictions of intake and digestibility with accuracies similar to those achieved previously using NIRS with dried samples. (C) 1998 Elsevier Science B.V.
Resumo:
Birds of prey forage over large areas and so might be expected to accumulate contaminants which are elevated but heterogeneously distributed in the general environment. The aim of this study was to test the hypothesis that arsenic levels in raptors from a region with elevated environmental arsenic concentrations were higher than those in birds from an uncontaminated part of Britain. Arsenic concentrations in the liver, kidney and muscle of kestrels, Falco tinnunculus, sparrowhawks, Accipiter nisus, and barn owls, Tyto alba, from south-west (SW) England, an area with naturally and anthropogenically (through mining) elevated environmental arsenic concentrations, were compared with those in birds from SW Scotland, where no such geochemical anomaly exists. Arsenic residues in kestrels from SW England were approximately three times greater than those in birds from SW Scotland for the three tissue types analysed. This was not the case for the other species in which arsenic residues were similar in birds from both regions. It is suggested that differences between species in both diet and arsenic metabolism could explain why kestrels have elevated arsenic tissue burdens in response to general environmental contamination but sparrowhawks and barn owls do not.