39 resultados para FAST-ION-BOMBARDMENT

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of electron correlation and second-order terms on theoretical total cross sections of transfer ionization in collisions of the helium atom with fast H+, He2+ and Li3+ ions are studied and reported. The total cross sections are calculated using highly correlated wavefunctions with expansion of the transition amplitude in the Born series through the second order. The results of these calculations are in sensible agreement with experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published. codes for single ionization of. target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Title of program: ARGON Catalogue identifier: ADSE Program summary URL: http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the code been vectorized or parallelized? Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 32 189 Distribution format: tar gzip file Keywords: Single ionization, cross sections, continuum-distorted-wave model, continuum- distorted-wave eikonal-initial-state model, target atoms, wave treatment Nature of physical problem: The code calculates total, and differential cross sections for the single ionization of target atoms ranging from hydrogen up to and including argon by both light and heavy ion impact. Method of solution: ARGON allows the user to calculate the cross sections using either the CDW or CDW-EIS [J. Phys. B 16 (1983) 3229] models within the wave treatment. Restrictions on the complexity of the program: Both the CDW and CDW-EIS models are two-state perturbative approximations. Typical running time: Times vary according to input data and number of processors. For one processor the test input data for double differential cross sections (40 points) took less than one second, whereas the test input for total cross sections (20 points) took 32 minutes. Unusual features of the program: none (C) 2003 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration resulting from the interaction of ultra-high intensity (2 x 10(20) W/cm(2)) and ultra-high contrast (similar to 10(10)) laser pulses with 0.05-10 mu m thick Al foils at normal (0 degrees) and 35 degrees laser incidence is investigated. When decreasing the target thickness from 10 mu m down to 0.05 mu m, the accelerated ions become less divergent and the ion flux increases, particularly at normal (0 degrees) laser incidence on the target. A laser energy conversion into protons of,similar to 6.5% is estimated at 35 degrees laser incidence. Experimental results are in reasonable agreement with theoretical estimates and can be a benchmark for further theoretical and computational work. (C) 2011 American Institute of Physics. [doi:10.1063/1.3643133]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the observation of fast hydrogen atoms in a capacitively coupled RF reactor by optical emission spectroscopy. For the analysis we use the prominent H-alpha emission line of atomic hydrogen in combination with other lines from molecular hydrogen and argon. Several chaxacteristic emission structures can be identified. One of these structures is related to fast hydrogen atoms traveling from the surface of the powered electrode to the plasma bulk. From the appearance time within the RF period we conclude that this feature originates from ion bombardment of the electrode surface. Measured pressure dependencies and a simple model for the ion dynamics support this assumption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

InP(1 0 0) surfaces were sputtered under ultrahigh vacuum conditions by 5 keV N2+ ions at an angle of incidence of 41° to the sample normal. The fluence, φ, used in this study, varied from 1 × 1014 to 5 × 1018 N2+ cm-2. The surface topography was investigated using field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). At the lower fluences (φ ≤ 5 × 1016 N2+ cm-2) only conelike features appeared, similar in shape as was found for noble gas ion bombardment of InP. At the higher fluences, ripples also appeared on the surface. The bombardment-induced topography was quantified using the rms roughness. This parameter showed a linear relationship with the logarithm of the fluence. A model is presented to explain this relationship. The ripple wavelength was also determined using a Fourier transform method. These measurements as a function of fluence do not agree with the predictions of the Bradley-Harper theory. © 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report results of classical molecular-dynamics simulations of bcc and beta-Ta thin films. Thermal PVD film growth, surface roughness, argon ion bombardment, phase stability and transformation, vacancy and adatom diffusion, and thermal relaxation kinetics are discussed. Distinct differences between the two structures are observed, including a complex vacancy diffusion mechanism in beta-Ta. Embedded atom method potentials, which were fitted to bcc properties, have been used to model the Ta-Ta interactions. In order to verify the application of these potentials to the more complex beta-Ta structure, we have also performed density functional theory calculations. Results and implications of these calculations are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral gas depletion mechanisms are investigated in a dense low-temperature argon plasma-an inductively coupled magnetic neutral loop (NL) discharge. Gas temperatures are deduced from the Doppler profile of the 772.38 nm line absorbed by argon metastable atoms. Electron density and temperature measurements reveal that at pressures below 0.1 Pa, relatively high degrees of ionization (exceeding 1%) result in electron pressures, p(e) = kT(e)n(e), exceeding the neutral gas pressure. In this regime, neutral dynamics has to be taken into account and depletion through comparatively high ionization rates becomes important. This additional depletion mechanism can be spatially separated due to non-uniform electron temperature and density profiles (non-uniform ionization rate), while the gas temperature is rather uniform within the discharge region. Spatial profiles of the depletion of metastable argon atoms in the NL region are observed by laser induced fluorescence spectroscopy. In this region, the depletion of ground state argon atoms is expected to be even more pronounced since in the investigated high electron density regime the ratio of metastable and ground state argon atom densities is governed by the electron temperature, which peaks in the NL region. This neutral gas depletion is attributed to a high ionization rate in the NL zone and fast ion loss through ambipolar diffusion along the magnetic field lines. This is totally different from what is observed at pressures above 10 Pa where the degree of ionization is relatively low (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the chemical evolution in the central core of contracting interstellar clouds. The chemical rate equations and the hydrodynamic equations are integrated simultaneously. The. contraction is followed from very low density (n = 10 cm(-3)) to a high-density core with n > 10(7) cm(-3). The chemical evolution is studied for various physical and chemical conditions, including the effects of varying the cosmic ray ionization rate, in order to understand the observed structures in TMC-1 and the extended ridge cloud in Orion. Our results give good agreement with the observations for models with fast ion-dipole reaction rates, low cosmic ray ionization rates and low depletion of N and S. It is also found that there should be different stages of evolution with different densities in these sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A reflex discharge plasma, obtained as a hybrid between a Penning discharge plasma (PDP) and a hollow-cathode discharge (HCD) plasma, is analysed as a possible direction-current, high-density plasma source. The experiment is run in oxygen at pressures of 10 mTorr and 1 mTorr, and for discharge currents of 100 to 200 mA. Although the gas pressure is considerably lower than those used in HCDs, the hollow-cathode effect (HCE) occurs for current levels higher than 100 mA and leads to plasma densities comparable with those obtained using inductive plasma sources. The presence of a constant magnetic field leads to the enhancement of electron emission from cathodes under ion bombardment, and to the decreasing of the ion loss by diffusion to the wall.