162 resultados para Explant culture

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel expression in gingival fibroblasts is currently limited. The role of non-neuronal TRP channel expression is an area of much research interest particularly since TRP channel activation has recently been hypothesised to be associated with inflammation. Objectives: The present study was designed to determine the expression of TRPV1, TRPV2, TRPV3 and TRPV4 on human gingival fibroblasts. Methods: Human gingival fibroblasts were derived by explant culture from surgical tissue following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Cell lysates of gingival fibroblasts were electrophoresed and blotted on to nitrocellulose before probing with specific anti-TRP antibodies. Immunoreactive bands were detected using anti-species antibodies and chemiluminescent detection. Results: Gingival fibroblasts were shown to express proteins corresponding to the TRPV1, TRPV2, TRPV3 and TRPV4 channels as determined by western blotting. Conclusion: This study reports for the first time the expression of TRPV1, TRPV2, TRPV3 and TRPV4 by gingival fibroblasts. Knowledge of the expression of TRP channels by human gingival fibroblasts will guide future research on the roles of TRP channels in sensing the external environment in the oral cavity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The inflammatory response to pulpal injury or infection has major clinical significance. Osteoprotegerin (OPG) is a soluble decoy receptor for Receptor Activator of NF kappa B Ligand (RANKL), preventing ligand binding to its receptor (RANK), thus inhibiting clastic cell formation. The aim of the study is to investigate the expression of OPG in human dental pulp and the effects of inflammatory mediators. This study will specifically investigate the effects of Transforming Growth Factor Beta-1 (TGF-β1) and Interleukin 1-Beta (IL-1β) on the expression of OPG on pulp fibroblasts in vitro. Method: Five primary pulp fibroblast populations were obtained by explant culture of healthy pulp tissue. Triplicate cultures were grown to confluence in 12-well plates and stimulated for 48 hours with IL-1β (10ng/ml) or TGF-β1 (10ng/ml). The conditioned media was collected and OPG levels detected by ELISA (R+D Systems, UK). Results: All fibroblast populations produced quantifiable levels of OPG in a time-dependant fashion. IL-1β significantly increased the expression of OPG (p<0.05) in all cultures. In contrast, TGF-β1 had no significant effect on OPG expression levels. In addition, previous work in our laboratory demonstrated both TGF-β1 and IL-1β stimulated OPG expression by periodontal ligament fibroblasts. Conclusion: These data indicate that IL-1β-regulated expression of OPG by pulpal fibroblasts may mediate hard tissue turnover in the inflamed dental pulp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Receptor Activator of NF-kappaB ligand (RANKL), through binding to its receptor (RANK), plays an important role in osteoclast differentiation and activation. Conversely, osteoprotegerin (OPG), a decoy receptor for RANKL, inhibits osteoclastogenesis and subsequent bone turnover. Little is known about the role of resident periodontal ligament fibroblasts in regulating bone turnover. The aim of this study was to determine (i) if periodontal ligament fibroblasts produced OPG in vitro and (ii) the effects of IL-1b and TGF-b1 on OPG expression. Methods: Three human periodontal ligament fibroblast populations, developed by explant culture, were grown to confluence in 6-well plates in DMEM supplemented with 10% FCS. Cells were washed in HBSS and then cultured for an additional 48 hours in serum-free media supplemented with IL-1b or TGF-b1 at 10ng/ml. OPG expression levels in the conditioned medium were determined by ELISA (R&D Systems, UK) and confirmed by Western blot. Results: All three fibroblast strains produced quantifiable levels of OPG. Both IL-1b and, to a lesser extent, TGF-b1 significantly stimulated OPG expression in all fibroblast strains (p<0.05). Pre-incubation of samples with N-glycosidase F prior to Western blots indicated glycosylation of expressed OPG. Conclusions: These data indicate that periodontal ligament fibroblasts can regulate osteoclast activation via the RANK/RANKL signalling pathway. These fibroblasts may play an important role in regulating bone turnover both in periodontal disease and orthodontic tooth movement.

Relevância:

20.00% 20.00%

Publicador: