111 resultados para Exascale, Supercomputer,OFET,energy effincency, data locality, HPC
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation. This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of 36 and 37% over a Cooley-Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley and the Walsh-Hadamard transforms.
Resumo:
Current variation aware design methodologies, tuned for worst-case scenarios, are becoming increasingly pessimistic from the perspective of power and performance. A good example of such pessimism is setting the refresh rate of DRAMs according to the worst-case access statistics, thereby resulting in very frequent refresh cycles, which are responsible for the majority of the standby power consumption of these memories. However, such a high refresh rate may not be required, either due to extremely low probability of the actual occurrence of such a worst-case, or due to the inherent error resilient nature of many applications that can tolerate a certain number of potential failures. In this paper, we exploit and quantify the possibilities that exist in dynamic memory design by shifting to the so-called approximate computing paradigm in order to save power and enhance yield at no cost. The statistical characteristics of the retention time in dynamic memories were revealed by studying a fabricated 2kb CMOS compatible embedded DRAM (eDRAM) memory array based on gain-cells. Measurements show that up to 73% of the retention power can be saved by altering the refresh time and setting it such that a small number of failures is allowed. We show that these savings can be further increased by utilizing known circuit techniques, such as body biasing, which can help, not only in extending, but also in preferably shaping the retention time distribution. Our approach is one of the first attempts to access the data integrity and energy tradeoffs achieved in eDRAMs for utilizing them in error resilient applications and can prove helpful in the anticipated shift to approximate computing.
Resumo:
We present TProf, an energy profiling tool for OpenMP-like task-parallel programs. To compute the energy consumed by each task in a parallel application, TProf dynamically traces the parallel execution and uses a novel technique to estimate the per-task energy consumption. To achieve this estimation, TProf apportions the total processor energy among cores and overcomes the limitation of current works which would otherwise make parallel accounting impossible to achieve. We demonstrate the value of TProf by characterizing a set of task parallel programs, where we find that data locality, memory access patterns and task working sets are responsible for significant variance in energy consumption between seemingly homogeneous tasks. In addition, we identify opportunities for fine-grain energy optimization by applying per-task Dynamic Voltage and Frequency Scaling (DVFS).
Resumo:
We report on calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 253 levels of the (1s22s22p6 ) 3s23p5 , 3s3p6 , 3s23p43d, 3s3p53d, 3s23p33d2 , 3s23p44s, 3s23p44p and 3s23p44d configurations of Ti VI. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 253 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing available results and the accuracy of the data is assessed. Additionally, lifetimes for all 253 levels are listed, although comparisons with other theoretical results are limited to only 88 levels. Our energy levels are estimated to be accurate to better than 1% (within 0.03 Ryd), whereas results for other parameters are probably accurate to better than 20%. A reassessment of the energy level data on the National Institute of Standards and Technology website for Ti VI is suggested.
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
Exascale computation is the next target of high performance computing. In the push to create exascale computing platforms, simply increasing the number of hardware devices is not an acceptable option given the limitations of power consumption, heat dissipation, and programming models which are designed for current hardware platforms. Instead, new hardware technologies, coupled with improved programming abstractions and more autonomous runtime systems, are required to achieve this goal. This position paper presents the design of a new runtime for a new heterogeneous hardware platform being developed to explore energy efficient, high performance computing. By combining a number of different technologies, this framework will both simplify the programming of current and future HPC applications, as well as automating the scheduling of data and computation across this new hardware platform. In particular, this work explores the use of FPGAs to achieve both the power and performance goals of exascale, as well as utilising the runtime to automatically effect dynamic configuration and reconfiguration of these platforms.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) exhibits fundamental limitations as a method to reduce energy consumption in computing systems. In the HPC domain, where performance is of highest priority and codes are heavily optimized to minimize idle time, DVFS has limited opportunity to achieve substantial energy savings. This paper explores if operating processors Near the transistor Threshold Volt- age (NTV) is a better alternative to DVFS for break- ing the power wall in HPC. NTV presents challenges, since it compromises both performance and reliability to reduce power consumption. We present a first of its kind study of a significance-driven execution paradigm that selectively uses NTV and algorithmic error tolerance to reduce energy consumption in performance- constrained HPC environments. Using an iterative algorithm as a use case, we present an adaptive execution scheme that switches between near-threshold execution on many cores and above-threshold execution on one core, as the computational significance of iterations in the algorithm evolves over time. Using this scheme on state-of-the-art hardware, we demonstrate energy savings ranging between 35% to 67%, while compromising neither correctness nor performance.
Resumo:
Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption.
This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.
Resumo:
DRAM technology faces density and power challenges to increase capacity because of limitations of physical cell design. To overcome these limitations, system designers are exploring alternative solutions that combine DRAM and emerging NVRAM technologies. Previous work on heterogeneous memories focuses, mainly, on two system designs: PCache, a hierarchical, inclusive memory system, and HRank, a flat, non-inclusive memory system. We demonstrate that neither of these designs can universally achieve high performance and energy efficiency across a suite of HPC workloads. In this work, we investigate the impact of a number of multilevel memory designs on the performance, power, and energy consumption of applications. To achieve this goal and overcome the limited number of available tools to study heterogeneous memories, we created HMsim, an infrastructure that enables n-level, heterogeneous memory studies by leveraging existing memory simulators. We, then, propose HpMC, a new memory controller design that combines the best aspects of existing management policies to improve performance and energy. Our energy-aware memory management system dynamically switches between PCache and HRank based on the temporal locality of applications. Our results show that HpMC reduces energy consumption from 13% to 45% compared to PCache and HRank, while providing the same bandwidth and higher capacity than a conventional DRAM system.