79 resultados para Event-based control

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new packet scheduling scheme called agent-based WFQ to control and maintain QoS parameters in virtual private networks (VPNs) within the confines of adaptive networks. Future networks are expected to be open heterogeneous environments consisting of more than one network operator. In this adaptive environment, agents act on behalf of users or third-party operators to obtain the best service for their clients and maintain those services through the modification of the scheduling scheme in routers and switches spanning the VPN. In agent-based WFQ, an agent on the router monitors the accumulated queuing delay for each service. In order to control and to keep the end-to-end delay within the bounds, the weights for services are adjusted dynamically by agents on the routers spanning the VPN. If there is an increase or decrease in queuing delay of a service, an agent on a downstream router informs the upstream routers to adjust the weights of their queues. This keeps the end-to-end delay of services within the specified bounds and offers better QoS compared to VPNs using static WFQ. This paper also describes the algorithm for agent-based WFQ, and presents simulation results. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a Radial Basis Function neural network based AVR is proposed. A control strategy which generates local linear models from a global neural model on-line is used to derive controller feedback gains based on the Generalised Minimum Variance technique. Testing is carried out on a micromachine system which enables evaluation of practical implementation of the scheme. Constraints imposed by gathering training data, computational load, and memory requirements for the training algorithm are addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper exposes the strengths and weaknesses of the recently proposed velocity-based local model (LM) network. The global dynamics of the velocity-based blended representation are directly related to the dynamics of the underlying local models, an important property in the design of local controller networks. Furthermore, the sub-models are continuous-time and linear providing continuity with established linear theory and methods. This is not true for the conventional LM framework, where the global dynamics are only weakly related to the affine sub-models. In this paper, a velocity-based multiple model network is identified for a highly nonlinear dynamical system. The results show excellent dynamical modelling performances, highlighting the value of the velocity-based approach for the design and analysis of LM based control. Three important practical issues are also addressed. These relate to the blending of the velocity-based local models, the use of normalised Gaussian basis functions and the requirement of an input derivative.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prevailing paradigm for researching sensorimotor synchronisation in humans involves finger tapping and temporal accuracy measures. However, many successful sensorimotor synchronisation actions require not only to be 'in time', but also to be in a predefined spatial position. Reaching this spatial position in many everyday actions often exceeds the average amplitude of a finger movement. The aim of this study is to address how people coordinate their movement to be in the right place at the right time when the scale of the movement varies. Does the scale of the movement and accuracy demands of the movement change the ability to accurately synchronise? To address these questions, a sensorimotor synchronisation task with three different inter-beat intervals, two different movement amplitudes and two different target widths was used. Our experiment demonstrated that people use different timing strategies-employing either a movement strategy (varying movement time) or a waiting strategy (keeping movement time constant) for large-scale movements. Those two strategies were found to be equally successful in terms of temporal accuracy and variability (spread of errors). With longer interval durations (2.5 and 3.5 s), variability of sensorimotor synchronisation performance increased (measured as the spread of errors). Analysing the data using the Vorberg and Wing (Handbook of perception and action. Academic Press, New York, pp 181-262, 1996) model shows a need to develop further existing timing models of sensorimotor synchronisation so that they could apply to large-scale movements, where different movement strategies naturally emerge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the design and implementation of a measurement-based QoS and resource management framework, CNQF (Converged Networks’ QoS Management Framework). CNQF is designed to provide unified, scalable QoS control and resource management through the use of a policy-based network
management paradigm. It achieves this via distributed functional entities that are deployed to co-ordinate the resources of the transport network through centralized policy-driven decisions supported by measurement-based control architecture. We present the CNQF architecture, implementation of the
prototype and validation of various inbuilt QoS control mechanisms using real traffic flows on a Linux-based experimental test bed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Viscosity represents a key indicator of product quality in polymer extrusion but has traditionally been difficult to measure in-process in real-time. An innovative, yet simple, solution to this problem is proposed by a Prediction-Feedback observer mechanism. A `Prediction' model based on the operating conditions generates an open-loop estimate of the melt viscosity; this estimate is used as an input to a second, `Feedback' model to predict the pressure of the system. The pressure value is compared to the actual measured melt pressure and the error used to correct the viscosity estimate. The Prediction model captures the relationship between the operating conditions and the resulting melt viscosity and as such describes the specific material behavior. The Feedback model on the other hand describes the fundamental physical relationship between viscosity and extruder pressure and is a function of the machine geometry. The resulting system yields viscosity estimates within 1% error, shows excellent disturbance rejection properties and can be directly applied to model-based control. This is of major significance to achieving higher quality and reducing waste and set-up times in the polymer extrusion industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is lack of consistent evidence as to how well PD patients are able to accurately time their movements across space with an external acoustic signal. For years, research based on the finger-tapping paradigm, the most popular paradigm for exploring the brain's ability to time movement, has provided strong evidence that patients are not able to accurately reproduce an isochronous interval [i.e., Ref. (1)]. This was undermined by Spencer and Ivry (2) who suggested a specific deficit in temporal control linked to emergent, rhythmical movement not event-based actions, which primarily involve the cerebellum. In this study, we investigated motor timing of seven idiopathic PD participants in event-based sensorimotor synchronization task. Participants were asked to move their finger horizontally between two predefined target zones to synchronize with the occurrence of two sound events at two time intervals (1.5 and 2.5 s). The width of the targets and the distance between them were manipulated to investigate impact of accuracy demands and movement amplitude on timing performance. The results showed that participants with PD demonstrated specific difficulties when trying to accurately synchronize their movements to a beat. The extent to which their ability to synchronize movement was compromised was found to be related to the severity of PD, but independent of the spatial constraints of the task.