2 resultados para Erosion rate

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of arbuscular mycorrhizal fungi (AMF) in resisting surface flow soil erosion has never been tested experimentally. We set up a full factorial greenhouse experiment using Achillea millefolium with treatments consisting of addition of AMF inoculum and non-microbial filtrate, non-AMF inoculum and microbial filtrate, AMF inoculum and microbial filtrate, and non-AMF inoculum and non-microbial filtrate (control) which were subjected to a constant shear stress in the form of surface water flow to quantify the soil detachment rate through time. We found that soil loss can be explained by the combined effect of roots and AMF extraradical hyphae and we could disentangle the unique effect of AMF hyphal length, which significantly reduced soil loss, highlighting their potential importance in riparian systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.