5 resultados para Ericaceae.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim:

The distribution of the Lusitanian flora and fauna, species which are found only in southern and western Ireland and in northern Spain and Portugal but which are absent from intervening countries, represents one of the classic conundrums of biogeography. The aim of the present study was to determine whether the distribution of the Lusitanian plant species Daboecia cantabrica was due to persistence in separate Irish and Iberian refugia, or has resulted from post-glacial recolonization followed by subsequent extinction of intervening populations.

Location:

Northern Spain and Co. Galway, western Ireland.

Methods:

Palaeodistribution modelling using Maxent was employed to identify putative refugial areas for D. cantabrica at the Last Glacial Maximum (LGM). Phylogeographical analysis of samples from 64 locations in Ireland and Spain were carried out using a chloroplast marker (atpB–rbcL), the nuclear ITS region, and an anonymous nuclear single-copy locus.

Results:

The palaeodistribution model indicated areas with a high probability of survival for D. cantabrica at the LGM off the western coast of Galicia in Spain, and in the Bay of Biscay. Spanish populations exhibited substantially higher genetic diversity than Irish populations at all three loci, as well as geographical structuring of haplotypes within Spain consistent with divergence in separate refugia. Spanish populations also exhibited far more endemic haplotypes. Divergence time between Irish and Spanish populations associated with the putative Biscay refugium was estimated as 3.333–32 ka.

Main conclusions:

Our data indicate persistence by D. cantabrica throughout the LGM in two separate southern refugia: one in western Galicia and one in the area off the coast of western France which now lies in the Bay of Biscay. Spain was recolonized from both refugia, whilst Ireland was most likely recolonized from the Biscay refugium. On the balance of evidence across the three marker types and the palaeodistribution modelling, our findings do not support the idea of in situ survival of D. cantabrica in Ireland, contrary to earlier suggestions. The fact that we cannot conclusively rule out the existence of a small, more northerly refugium, however, highlights the need for further analysis of Lusitanian plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A late Pleistocene vegetation record is presented, using multi-proxy analysis from three palaeochannels in the northern (Bario) and southern (Pa'Dalih) Kelabit Highlands of Sarawak, Malaysian Borneo. Before 50 000 cal a BP and until approximate to 47 700 cal a BP [marine isotope stage 3 (MIS3)], two of the sites were probably being influenced by energetic fluvial deposition, possibly associated with strong seasonality. Fluvial activity declines between 47 700 and 30 000 cal a BP (MIS3), and may be associated with a reduction in seasonality with overall stability in precipitation. The pollen record between 47 700 and 30 000 cal a BP generally shows much higher representation of upper-montane taxa compared with the Holocene, indicating often significantly reduced temperatures. After 35 000-30 000 cal a BP and until the mid-Holocene, hiatuses appear in two of the records, which could be linked to fluvial down-cutting during the late/mid Holocene. Despite the jump in ages, a pronounced representation of Ericaceae and upper-montane taxa, represented both at Bario and at Pa'Dalih, corresponds to a further lowering of temperatures during the Last Glacial Maximum (MIS2). Thick charcoal bands in the PDH 210 record also suggest periods of extreme aridity between 30 200 and 12 700 cal a BP. This is followed by energetic fluvial deposition of sands and gravels, and may reflect a significant increase in seasonality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The population density and age structure of two species of heather psyllid Strophingia ericae and Strophingia cinereae, feeding on Calluna vulgaris and Erica cinerea, respectively, were sampled using standardized methods at locations throughout Britain. Locations were chosen to represent the full latitudinal and altitudinal range of the host plants.

2. The paper explains how spatial variation in thermal environment, insect life-history characteristics and physiology, and plant distribution, interact to provide the mechanisms that determine the range and abundance of Strophingia spp.

3. Strophingia ericae and S. cinereae, despite the similarity in the spatial distribution patterns of their host plants within Britain, display strongly contrasting geographical ranges and corresponding life-history strategies. Strophingia ericae is found on its host plant throughout Britain but S. cinereae is restricted to low elevation sites south of the Mersey-Humber line and occupies only part of the latitudinal and altitudinal range of its host plant. There is no evidence to suggest that S. ericae has reached its potential altitudinal or latitudinal limit in the UK, even though its host plant appears to reach its altitudinal limit.

4. There was little difference in the ability of the two Strophingia spp. to survive shortterm exposure to temperatures as low as - 15 degrees C and low winter temperatures probably do not limit distribution in S. cinereae.

5. Population density of S. ericae was not related to altitude but showed a weak correlation with latitude. The spread of larval instars present at a site, measured as an index of instar homogeneity, was significantly correlated with a range of temperature related variables, of which May mean temperature and length of growing season above 3 degrees C (calculated using the Lennon and Turner climatic model) were the most significant. Factor analysis did not improve the level of correlation significantly above those obtained for single climatic variables. The data confirmed that S. ericae has a I year life cycle at the lowest elevations and a 2 year life cycle at the higher elevations. However, there was no evidence, as previously suggested, for an abrupt change from a one to a 2 year life cycle in S. ericae with increasing altitudes or latitudes.

6. By contrast with S. ericae, S. cinereae had an obligatory 1 year life cycle, its population decreased with altitude and the index of instar homogeneity showed little correlation with single temperature variables. Moreover, it occupied only part of the range of its host plant and its spatial distribution in the UK could be predicted with 96% accuracy using selected variables in discriminant analysis.

7. The life histories of the congeneric heather psyllids reflect adaptations that allow them to exploit host plants with different distributions in climatic and thereby geographical space. Strophingia ericae has the flexible life history that enables it to exploit C. vulgaris throughout its European boreal temperate range. Strophingia cinereae has a less flexible life history and is adapted for living on an oceanic temperate host. While the geographic ranges of the two Strophingia spp. overlap within the UK, the psyllids appear to respond differently to variation in their thermal environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants that form ericoid mycorrhizal associations are widespread in harsh habitats. Ericoid mycorrhizal fungal endophytes are a genetically diverse group, and they appear to be able to alleviate certain environmental stresses and so facilitate the establishment and survival of Ericaceae. Some of the fungal taxa that form ericoid mycorrhizas, or at least closely related strains, also form associations with other plant hosts (trees and leafy liverworts). The functional significance of these associations and putative mycelial links between Ericaceae and other plant taxa, however, remain unclear. Evidence from environments that are contaminated by toxic metals indicates that ericoid mycorrhizal fungal endophytes, and in some instances their plant hosts, can evolve resistance to these metals. The apparent ability of these endophytes to develop resistance enables ericoid mycorrhizal plants to colonize polluted soil. This seems to be a major factor in the success of ericoid mycorrhizal taxa in a range of harsh environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 107 putative ericoid mycorrhizal endophytes were isolated from hair roots of Calluna vulgaris from two abandoned arsenic/copper mine sites and a natural heathland site in southwest England. The endophytes were initially grouped as 14 RFLP types, based on the results of ITS-RFLP analysis using the restriction endonucleases Hinf I, Rsa I and Hae III. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with sequences for known ericoid mycorrhizal endophytes and selected ascomycetes. The majority of endophyte isolates (62-92%) from each site were identified as Hymenoscyphus ericae, but a number of other less common mycorrhizal RFLP types were also identified, all of which appear to have strong affinities with the order Leotiales. None of the less common RFLP types was isolated from C. vulgaris at more than one field site. Neighbour-joining analysis indicated similarities between the endophytes from C. vulgaris and mycorrhizal endophytes isolated from other Ericaceae and Epacridaceae hosts in North America and Australia.