6 resultados para ErbB2
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P
Resumo:
Clinical and pathological heterogeneity of breast cancer hinders selection of appropriate treatment for individual cases. Molecular profiling at gene or protein levels may elucidate the biological variance of tumors and provide a new classification system that correlates better with biological, clinical and prognostic parameters. We studied the immunohistochemical profile of a panel of seven important biomarkers using tumor tissue arrays. The tumor samples were then classified with a monothetic (binary variables) clustering algorithm. Two distinct groups of tumors are characterized by the estrogen receptor (ER) status and tumor grade (p = 0.0026). Four biomarkers, c-erbB2, Cox-2, p53 and VEGF, were significantly overexpressed in tumors with the ER-negative (ER-) phenotype. Eight subsets of tumors were further identified according to the expression status of VEGF, c-erbB2 and p53. The malignant potential of the ER-/VEGF+ subgroup was associated with the strong correlations of Cox-2 and c-erb132 with VEGF. Our results indicate that this molecular classification system, based on the statistical analysis of immunohistochemical profiling, is a useful approach for tumor grouping. Some of these subgroups have a relative genetic homogeneity that may allow further study of specific genetically-controlled metabolic pathways. This approach may hold great promise in rationalizing the application of different therapeutic strategies for different subgroups of breast tumors. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Tissue microarrays allow high throughput molecular profiling of diagnostic or predictive markers in cancer specimens and rapid validation of novel potential candidates identified from genomic and proteomic analyses in a large number of tumor samples. To validate the use of tissue microarray technology for all the main biomarkers routinely used to decide breast cancer prognostication and postsurgical adjuvant therapy, we constructed a tissue microarray from 97 breast tumors, with a single 0.6 mm core per specimen. Inummostaining; of tissue microarray sections and conventional full sections of each tumor were performed using well-characterized prognostic markers (estrogen receptor ER, progesterone receptor PR and c-erbB2). The full section versus tissue microarray concordance for these stains was 97% for ER, 98% for PR, and 97% for c-erbB2, respectively, with a strong statistical association (kappa value more than 0.90). Fluorescence in situ hybridization analysis for HER-2/neu gene amplification from the single-core tissue microarray was technically successful in about 90% (87/97) of the cases, with a concordance of 95% compared with parallel analyses with the full sections. The correlation with other pathological parameters was not significantly different between full-section and array-based results. It is concluded that the constructed tissue microarray with a single core per specimen ensures full biological representativeness to identify the associations between biomarkers and clinicopathological parameters, with no significant associated sampling bias.
Resumo:
Despite being common in epithelial malignancies, the timing of receptor tyrosine kinase (RTK) up-regulation is poorly understood and therefore hampers the identification of the receptor to target for effective treatment. We aimed to determine if RTK expression changes were early events in carcinogenesis. Esophageal adenocarcinoma and its pre-invasive lesion, Barrett's esophagus, were used for immunohistochemical analysis of the RTK panel, EGFR, ErbB2, ErbB3, Met and FGFR2, by utilising a cohort of patients with invasive disease (n = 367) and two cohorts with pre-invasive disease, one cross-sectional (n = 110) and one longitudinal in time (n = 91). The results demonstrated that 51% of esophageal adenocarcinomas over-expressed at least one of the RTK panel; with 21% of these over-expressing multiple receptors. Up-regulation of RTK expression was an early event corresponding with low grade dysplasia development (25% in areas without dysplasia vs. 63% in low grade dysplasia, p
Resumo:
Versican is a hyaluronan-binding, extracellular chondroitin sulfate proteoglycan produced by several tumor types, including malignant melanoma, which exists as four different splice variants. The short V3 isoform contains the G1 and G3 terminal domains of versican that may potentially interact directly or indirectly with the hyaluronan receptor CD44 and the EGFR, respectively. We have previously described that overexpression of V3 in MeWo human melanoma cells markedly reduces tumor cell growth in vitro and in vivo. In this study we have investigated the signaling mechanism of V3 by silencing the expression of CD44 in control and V3-expressing melanoma cells. Suppression of CD44 had the same effects on cell proliferation and cell migration than those provoked by V3 expression, suggesting that V3 acts through a CD44-mediated mechanism. Furthermore, CD44-dependent hyaluronan internalization was blocked by V3 expression and CD44 silencing, leading to an accumulation of this glycosaminoglycan in the pericellular matrix and to changes in cell migration on hyaluronan. Furthermore, ERK1/2 and p38 activation after EGF treatment were decreased in V3-expressing cells suggesting that V3 may also interact with the EGFR through its G3 domain. The existence of a EGFR/ErbB2 receptor complex able to interact with CD44 was identified in MeWo melanoma cells. V3 overexpression resulted in a reduced interaction between EGFR/ErbB2 and CD44 in response to EGF treatment. Our results indicate that the V3 isoform of versican interferes with CD44 and the CD44-EGFR/ErbB2 interaction, altering the signaling pathways, such as ERK1/2 and p38 MAPK, that regulate cell proliferation and migration.