125 resultados para Equivalence Relation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
We examine hypotheses for the neural basis of the profile of visual cognition in young children with Williams syndrome (WS). These are: (a) that it is a consequence of anomalies in sensory visual processing; (b) that it is a deficit of the dorsal relative to the ventral cortical stream; (c) that it reflects deficit of frontal function, in particular of fronto-parietal interaction; (d) that it is related to impaired function in the right hemisphere relative to the left. The tests reported here are particularly relevant to (b) and (c). They form part of a more extensive programme of investigating visual, visuospatial, and cognitive function in large group of children with WS children, aged 8 months to 15 years. To compare performance across tests, avoiding floor and ceiling effects, we have measured performance in children with WS in terms of the ‘age equivalence’ for typically developing children. In this paper the relation between dorsal and ventral function was tested by motion and form coherence thresholds respectively. We confirm the presence of a subgroup of children with WS who perform particularly poorly on the motion (dorsal) task. However, such performance is also characteristic of normally developingchildren up to 5 years: thus the WS performance may reflect an overall persisting immaturity of visuospatial processing which is particularly evident in the dorsal stream. Looking at the performance on the global coherence tasks of the entire WS group, we find that there is also a subgroup who have both high form and motion coherence thresholds, relative to the performance of children of the same chronological age and verbal age on the BPVS, suggesting a more general global processing deficit. Frontal function was tested by a counterpointing task, ability to retrieve a ball from a ‘detour box’, and the Stroop-like ‘day-night’ task, all of which require inhibition of a familiar response. When considered in relation to overall development as indexed by vocabulary, the day-night task shows little specific impairment, the detour box shows a significant delay relative to controls, and the counterpointing task shows a marked and persistent deficit in many children. We conclude that frontal control processes show most impairment in WS when they are associated with spatially directed responses, reflecting a deficit of fronto-parietal processing. However, children with WS may successfully reduce the effect of this impairment by verbally mediated strategies. On all these tasks we find a range of difficulties across individual children and a small subset of WS who show very good performance, equivalent to chronological age norms of typically developing children. Neurobiological models of visuo-spatial cognition in children with WS p.4 Overall, we conclude that children with WS have specific processing difficulties with tasks involving frontoparietal circuits within the spatial domain. However, some children with WS can achieve similar performance to typically developing children on some tasks involving the dorsal stream, although the strategies and processing may be different in the two groups.
Resumo:
Myostatin is a negative regulator of skeletal muscle growth. We have previously reported that recombinant myostatin protein inhibits DNA and protein synthesis in C2C12 cells. Our objective was to assess if C2C12 cells express myostatin, determine its sub-cellular localization and the developmental stage of C2C12 cells in which myostatin mRNA and protein are expressed. To study the endogenous expression of myostatin, C2C12 myoblasts were allowed to progress to myotubes, and changes in the levels of endogenous myostatin mRNA expression were determined by RT-PCR. The myostatin protein and the two major myosin heavy chain (MHC) isoforms (MHC-I and -II) were determined by Western blot. Confirmation of the relative MHC expression patterns was obtained by a modified polyacrylamide gel electropheretic (PAGE) procedure. Imunofluorescence staining was employed to localize the site of myostatin expression and the relative distribution of the MHC isoforms. Co-expression of these proteins was studied using a dual staining approach. Expression of myostatin mRNA was found in myotubes but not in myoblasts. Myostatin protein was seen in most but not all, of the nuclei of polynucleated fibers expressing MHC-II, and myostatin was detected in the cytoplasm of myotube. The localization of myostatin protein in myotube nuclei was confirmed by Western blot of isolated nuclear and cytoplasmic fractions. Incubation of C2C12 myotubes with graded doses of dexamethasone dose-dependently increased the intensity of nuclear myostatin immunostaining and also resulted in the appearance of cytoplasmic expression. In conclusion, myostatin was expressed mostly in C2C12 myotubes nuclei expressing MHC-II. Its predominant