3 resultados para Epididymis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Diabetics have a significantly higher percentage of sperm with nuclear DNA (nDNA) fragmentation and increased levels of advanced glycation end products (AGEs), in their testis, epididymis and sperm. As the receptor for AGEs (RAGE) is important to oxidative stress and cell dysfunction, we hypothesise, that it may be involved in sperm nDNA damage. METHODS: Immunohistochemistry was performed to determine the presence of RAGE in the human testis and epididymis. A comparison of the receptor's incidence and localisation on sperm from 10 diabetic and 11 non-diabetic men was conducted by blind semi-quantitative assessment of the immunostaining. ELISA analysis ascertained RAGE levels in seminal plasma and sperm from 21 diabetic and 31 non-diabetic subjects. Dual labelling immunolocalisation was employed to evaluate RAGE's precise location on the sperm head. RESULTS: RAGE was found throughout the testis, caput epididymis, particularly the principle cells apical region, and on sperm acrosomes. The number of sperm displaying RAGE and the overall protein amount found in sperm and seminal plasma were significantly higher in samples from diabetic men (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable affects of diabetes on sperm function. Specifically, a recent study has found significantly higher sperm nuclear DNA (nDNA) fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and 9 non-diabetic subjects. CML immunoreactivity was found through out the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells (cytoplasm and nuclei) of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggests that these compounds may play a hitherto unrecognized role in male infertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable effects of diabetes on sperm function. Specifically, a recent study has found a significantly higher sperm nuclear DNA fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and nine non-diabetic subjects. CML immunoreactivity was found throughout the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells cytoplasm and nuclei of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non-diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggest that these compounds may play a hitherto unrecognized role in male infertility.