88 resultados para Environmental impacts of tourism

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gas extracted from hydraulically fractured shale formations potentially has a big impact on the global energy landscape. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct realizations of numerical modeling simulations to assess fluid flow and chloride transport from a synthetic Bowland Shale over a period of 11,000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. Chloride mass exchange between fractures and the rock matrix was fully accounted for in the model. The assessment was carried out to investigate fluid and chloride mass fluxes before, during, and after hydraulic fracturing of the Bowland Shale. Impacts of the upward fracture height and aperture, as well as hydraulic conductivity of the multilayered bedrock system, are also included this assessment. This modeling revealed that the hydraulically fractured Bowland Shale is unlikely to pose a risk to its overlying groundwater quality when the induced fracture aperture is ≤200 µm. With the fracture aperture ≥1000 µm, the upward chloride flux becomes very sensitive to the upward fracture height growth and hydraulic conductivity of the multilayered bedrock system. In the extremely unlikely event of the upward fracture growth directly connecting the shale formation to the overlying Sherwood Sandstone aquifer with the fracture aperture ≥1000 µm, the upward chloride mass flux could potentially pose risks to the overlying aquifer in 100 years. The model study also revealed that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, reducing further upward flux toward the overlying aquifers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response - the relationship between predation rate and prey supply - of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive alien aquatic species, including marine and freshwater macroinvertebrates, have become increasingly important in terms of both environmental and socio-economic impacts. In order to assess their environmental and economic costs, we applied the Generic Impact Scoring System (GISS) and performed a comparison with other taxa of invaders in Europe. Impacts were scored into six environmental and six socio-economic categories, with each category containing five impact levels. Among 49 aquatic macroinvertebrates, the most impacting species were the Chinese mitten crab, Eriocheir sinensis (Milne-Edwards, 1853) and the zebra mussel, Dreissena polymorpha (Pallas, 1771). The highest impacts found per GISS impact category were, separately; on ecosystems, through predation, as competitors, and on animal production. Eleven species have an impact score > 10 (high impact) and seven reach impact level 5 in at least one impact category (EU blacklist candidates), the maximum score that can be given is 60 impact points. Comparisons were drawn between aquatic macroinvertebrates and vertebrate invaders such as fish, mammals and birds, as well as terrestrial arthropods, revealing invasive freshwater macroinvertebrates to be voracious predators of native prey and damaging to native ecosystems compared with other taxa. GISS can be used to compare these taxa and will aid policy making and targeting of invasive species for management by relevant agencies, or to assist in producing species blacklist candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting the ecological impacts of damaging invasive species under relevant environmental contexts is a major challenge, for which comparative functional responses (the relationship between resource availability and consumer uptake rate) have great potential. Here, the functional responses of Gammarus pulex, an ecologically damaging invader in freshwaters in Ireland and other islands, were compared with those of a native trophic equivalent Gammarus duebeni celticus. Experiments were conducted at two dissolved oxygen concentrations (80 and 50 % saturation), representative of anthropogenic water quality changes, using two larval prey, blackfly (Simuliidae spp.) and mayfly (Baetis rhodani). Overall, G. pulex had higher Type II functional responses and hence predatory impacts than G. d. celticus and the functional responses of both predators were reduced by lowered oxygen concentration. However, this reduction was of lower magnitude for the invader as compared to the native. Further, the invader functional response at low oxygen was comparable to that of the native at high oxygen. Attack rates of the two predators were similar, with low oxygen reducing these attack rates, but this effect occurred more strongly for blackfly than mayfly prey. Handling times were significantly lower for the invader compared with the native, and significantly higher at low oxygen, however, the effect of lowered oxygen on handling times was minimal for the invader and pronounced for the native. Maximum feeding rates were significantly greater for the invader compared with the native, and significantly reduced at low oxygen, with this effect again lesser for the invader as compared to the native. The greater functional responses of the invader corroborate with its impacts on recipient macroinvertebrate communities when it replaces the native. Further, our experiments predict that the impact of the invader will be less affected than the native under altered oxygen regimes driven by anthropogenic influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many environmental valuation applications standard sample sizes for choice modelling surveys are impractical to achieve. One can improve data quality using more in-depth surveys administered to fewer respondents. We report on a study using high quality rank-ordered data elicited with the best-worst approach. The resulting "exploded logit" choice model, estimated on 64 responses per person, was used to study the willingness to pay for external benefits by visitors for policies which maintain the cultural heritage of alpine grazing commons. We find evidence supporting this approach and reasonable estimates of mean WTP, which appear theoretically valid and policy informative. © The Author (2011).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desiccation crack formation is a key process that needs to be understood in assessment of landfill cap performance under anticipated future climate change scenarios. The objectives of this study were to examine: (a) desiccation cracks and impacts that roots may have on their formation and resealing, and (b) their impacts on hydraulic conductivity under anticipated climate change precipitation scenarios. Visual observations, image analysis of thin sections and hydraulic conductivity tests were carried out on cores collected from two large-scale laboratory trial landfill cap models (∼80 × 80 × 90 cm) during a year of four simulated seasonal precipitation events. Extensive root growth in the topsoil increased percolation of water into the subsurface, and after droughts, roots grew deep into low-permeability layers through major cracks which impeded their resealing. At the end of 1 year, larger cracks had lost resealing ability and one single, large, vertical crack made the climate change precipitation model cap inefficient. Even though the normal precipitation model had developed desiccation cracks, its integrity was preserved better than the climate change precipitation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate and other environmental change presents a number of challenges for effective food safety. Food production, distribution and consumption takes place within functioning ecosystems but this backdrop is often ignored or treated as static and unchanging. The risks presented by environmental change include novel pests and diseases, often caused by problem species expanding their spatial distributions as they track changing conditions, toxin generation in crops, direct effects on crop and animal production, consequences for trade networks driven by shifting economic viability of production methods in changing environments and finally, wholesale transformation of ecosystems as they respond to novel climatic regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI) in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA) are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.