71 resultados para Environmental Conditions
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
After digestion of infected meat the free L1 of Trichinella spp. penetrate the intestinal mucosa where they moult to the mature adult stage. We have used proteomics to identify changes in protein secretion during in vitro culture of free T. spiralis muscle larvae under different environmental conditions, and to correlate these changes with their infectivity in mice. Muscle larvae were cultured in different media (RPMI-1640, C-199 and HBSS) under conditions of anaerobiosis, microaerobiosis and in 5% CO(2) at 37 degrees C. Following incubation the larval excretory/secretory proteins were analysed by two-dimensional gel electrophoresis and the larvae were used to orally infect naïve CD1 mice. For all culture media tested, infectivity of the L1 was preserved following incubation in anaerobic conditions. In contrast, the infectivity of worms cultured in nutrient-rich media was almost completely abolished in both microaerobiosis and in the presence of 5% CO(2). Some infectivity was retained in poor or reduced culture media. Comparative analysis of larval infectivity and protein secretion showed that loss of infectivity correlated with the appearance of non-tyvelosylated proteins that in turn may be related to the onset of moulting.
Resumo:
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Resumo:
There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.
Resumo:
This paper investigates the environmental conditions inside a highly-glazed cross-ventilated meeting room. A 3D computational fluid dynamics (CFD) model of an indoor environment is developed with the support of the field measurements performed in a normally operating room. The work presented here follows the steps of the formal calibration methodology for the development of CFD models of naturally ventilated environments. This paper utilises the calibration methodology in order to predict environmental conditions within the highly-glazed cross-ventilated room occupied by people. The CFD model is verified and validated with field measurements performed in an operating building. Moreover, parametric analysis determines the most influential boundary conditions on indoor air temperatures and air speeds
Resumo:
Temperature and moisture conditions are key drivers of stone weathering processes in both natural and built environments. Given their importance in the breakdown of stone, a detailed understanding of their temporal and spatial variability is central to understanding present-day weathering behaviour and for predicting how climate change may influence the nature and rates of future stone decay.
Subsurface temperature and moisture data are reported from quarry fresh Peakmoor Sandstone samples exposed during summer (June–July) and late autumn / early winter (October–December) in a mid-latitude, temperate maritime environment. These data demonstrate that the subsurface thermal response of sandstone comprises numerous short-term (minutes), low magnitude fluctuations superimposed upon larger-scale diurnal heating and cooling cycles with distinct aspect-related differences. The short-term fluctuations create conditions in the outer 5–10 mm of stone that are much more ‘energetic’ in comparison to the more subdued thermal cycling that occurs deeper within the sandstone samples.
Data show that moisture dynamics are equally complex with a near-surface region (5–10 mm) in which frequent moisture cycling takes place and this, combined with the thermal dynamism exhibited by the same region may have significant implications for the nature and rate of weathering activity. Data indicate that moisture input from rainfall, particularly when it is wind-driven, can travel deep into the stone where it can prolong the time of wetness. This most often occurs during wetter winter months when moisture input is high and evaporative loss is low but can happen at any time during the year when the hydraulic connection between near-surface and deeper regions of the stone is disrupted with subsequent loss of moisture from depth slowing as it becomes reliant on vapour diffusion alone.
These data illustrate the complexity of temperature and moisture conditions in sandstone exposed to the ‘moderate’ conditions of a temperate maritime environment. They highlight differences in thermal and moisture cycling between near-surface (5–10 mm) and deeper regions within the stone and contribute towards a better understanding of the development of structural and mineralogical heterogeneity between the stone surface and substrate.
Resumo:
A 1.2 m sediment core from Lake Forsyth, Canterbury, New Zealand, records the development of the catchment/lake system over the last 7000 years, and its response to anthropogenic disturbance following European settlement c. 1840 AD. Pollen was used to reconstruct catchment vegetation history, while foraminifera, chironomids, Trichoptera, and the abundance of Pediastrum simplex colonies were used to infer past environmental conditions within the lake. The basal 30 cm of core records the transition of the Lake Forsyth Basin from a tidal embayment to a brackish coastal lake. Timing of closure of the lake mouth could not be accurately determined, but it appears that Lake Forsyth had stabilised as a slightly brackish, oligo mesotrophic shallow lake by about 500 years BP. Major deforestation occurred on Banks Peninsula between 1860 AD and 1890 AD. This deforestation is marked by the rapid decline in the main canopy trees (Prumnopitys taxifolia (matai) and Podocarpus totara/hallii (totara/mountain totara), an increase in charcoal, and the appearance of grasses. At around 1895 AD, pine appears in the record while a willow (Salix spp.) appears somewhat later. Redundancy analysis (RDA) of the pollen and aquatic species data revealed a significant relationship between regional vegetation and the abundance of aquatic taxa, with the percentage if disturbance pollen explaining most (14.8%) of the constrained variation in the aquatic species data. Principle components analysis (PCA) of aquatic species data revealed that the most significant period of rapid biological change in the lakes history corresponded to the main period of human disturbance in the catchment. Deforestation led to increased sediment and nutrient input into the lake which was accompanied by a major reduction in salinity. These changes are inferred from the appearance and proliferation of freshwater algae (Pediastrum simplex), an increase in abundance and diversity of chironomids, and the abundance of cases and remains from the larvae of the caddisfly, Oecetis unicolor. Eutrophication accompanied by increasing salinity of the lake is inferred from a significant peak and then decline of P. simplex, and a reduction in the abundance and diversity of aquatic invertebrates. The artificial opening of the lake to the Pacific Ocean, which began in the late 1800s, is the likely cause of the recent increase in salinity. An increase in salinity may have also encouraged blooms of the halotolerant and hepatotoxic cyanobacteria Nodularia spumigena.
Resumo:
There is evidence that active, pre-emergence maternal brood care in amphipod crustaceans may be associated with 'harsh' environmental conditions. We examined, in the rockpool amphipod Apherusa jurinei, behavioural activities that may function as a form of active brood care. Only ovigerous females showed 'curl' and 'stretch' activities, with consequent flushing of the brood pouch and cycling of the eggs therein. There was a significant decline in these activities as embryonic development advanced and brood care almost ceased when well-developed embryos showed a heart pulse and self-ventilation. We propose that this pattern of brood care reflects changes in the physiological requirements of embryos as they develop within the egg membrane. In addition, ovigerous females showed significantly higher levels of brood care under lowered oxygen conditions. They achieved this by increasing the average duration of the 'stretch' component, with other brood care components remaining constant. Thus, developmental and environmental cues alter the components of active brood care in distinct ways. Experimental removal showed that the physical presence of eggs in the brood pouch is important in controlling the expression of brood care activities. However, females with all of their eggs removed continued to brood at low levels, suggesting that a maternal state also controls brood care. The sophisticated expression of active maternal brood care in amphipods under 'harsh' environmental conditions such as rockpools has implications both for individual reproductive success and the distribution and abundance of brooding versus nonbrooding species. (C) 2002 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.
Resumo:
Maerl is a general term used for loose-lying subtidal beds of nodular coralline red algae. Maerl beds support high associated invertebrate and algal biodiversity, and are subject to European and UK conservation legislation. Previous investigations have shown European maerl to be ecologically fragile due to growth rates of approximately I mm per year. However, these very slow growth rates have hampered attempts to determine the key ecological requirements and sensitivity characteristics of living maerl. In this study, photosynthetic capacity determined by pulse amplitude modulated (PAM) fluorometry was used as a diagnostic of stress caused by various environmental conditions. Maerl species were exposed to a range of temperatures, salinities and light levels and to burial, fragmentation, desiccation and heavy metal treatment. Maerl was not as susceptible as previously assumed to extremes of salinity, temperature and heavy metal pollution, but burial, especially in fine or anoxic sediments, was lethal or caused significant stress. These data indicate that the main anthropogenic hazard for live maerl and the rich communities that depend on them is smothering by fine sediment, such as that produced by trawling or maerl extraction, from sewage discharges or shellfish and fish farm waste, and sedimentation resulting from disruption to tidal flow. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.
Resumo:
Laying hens generally choose to aggregate, but the extent to which the environments in which we house them impact on social group dynamics is not known. In this paper the effect of pen environment on spatial clustering is considered. Twelve groups of four laying hens were studied under three environmental conditions: wire floor (W), shavings (Sh) and perches, peat, nestbox and shavings (PPN). Groups experienced each environment twice, for five weeks each time, in a systematic order that varied from group to group. Video recordings were made one day per week for 30 weeks. To determine level of clustering, we recorded positional data from a randomly selected 20-min excerpt per video (a total of 20 min x 360 videos analysed). On screen, pens were divided into six equal areas. In addition, PPN pens were divided into an additional four (sub) areas, to account for the use of perches (one area per half perch). Every 5 s, we recorded the location of each bird and calculated location use over time, feeding synchrony and cluster scores for each environment. Feeding synchrony and cluster scores were compared against unweighted and weighted (according to observed proportional location use) Poisson distributions to distinguish between resource and social attraction.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.
Resumo:
The application of electric bias across tip–surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after 12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
Resumo:
The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I) observational gene expression data: normal environmental condition, (II) interventional gene expression data: growth in rich media, (III) interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.
Resumo:
Red squirrels (Sciurus vulgaris) declined in Great Britain and Ireland during the last century, due to habitat loss and the introduction of grey squirrels (Sciurus carolinensis), which competitively exclude the red squirrel and act as a reservoir for squirrelpox virus (SQPV). The disease is generally fatal to red squirrels and their ecological replacement by grey squirrels is up to 25 times faster where the virus is present. We aimed to determine: (1) the seropositivity and prevalence of SQPV DNA in the invasive and native species at a regional scale; (2) possible SQPV transmission routes; and, (3) virus degradation rates under differing environmental conditions. Grey (n = 208) and red (n = 40) squirrel blood and tissues were sampled. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) techniques established seropositivity and viral DNA presence, respectively. Overall 8% of squirrels sampled (both species combined) had evidence of SQPV DNA in their tissues and 22% were in possession of antibodies. SQPV prevalence in sampled red squirrels was 2.5%. Viral loads were typically low in grey squirrels by comparison to red squirrels. There was a trend for a greater number of positive samples in spring and summer than in winter. Possible transmission routes were identified through the presence of viral DNA in faeces (red squirrels only), urine and ectoparasites (both species). Virus degradation analyses suggested that, after 30 days of exposure to six combinations of environments, there were more intact virus particles in scabs kept in warm (25°C) and dry conditions than in cooler (5 and 15°C) or wet conditions. We conclude that SQPV is present at low prevalence in invasive grey squirrel populations with a lower prevalence in native red squirrels. Virus transmission could occur through urine especially during warm dry summer conditions but, more notably, via ectoparasites, which are shared by both species.
Resumo:
Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.