41 resultados para Engineering students
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The Organisation for Economic Co-operation and Development investigated numeracy proficiency among adults of working age in 23 countries across the world. Finland had the highest mean numeracy proficiency for people in the 16 – 24 age group while Northern Ireland’s score was below the mean for all the countries. An international collaboration has been undertaken to investigate the prevalence of mathematics within the secondary education systems in Northern Ireland and Finland, to highlight particular issues associated with transition into university and consider whether aspects of the Finnish experience are applicable elsewhere. In both Northern Ireland and Finland, at age 16, about half of school students continue into upper secondary level following their compulsory education. The upper secondary curriculum in Northern Ireland involves a focus on three subjects while Finnish students study a very wide range of subjects with about two-thirds of the courses being compulsory. The number of compulsory courses in maths is proportionally large; this means that all upper secondary pupils in Finland (about 55% of the population) follow a curriculum which has a formal maths content of 8%, at the very minimum. In contrast, recent data have indicated that only about 13% of Northern Ireland school leavers studied mathematics in upper secondary school. The compulsory courses of the advanced maths syllabus in Finland are largely composed of pure maths with a small amount of statistics but no mechanics. They lack some topics (for example, in advanced calculus and numerical methods for integration) which are core in Northern Ireland. This is not surprising given the much broader curriculum within upper secondary education in Finland. In both countries, there is a wide variation in the mathematical skills of school leavers. However, given the prevalence of maths within upper secondary education in Finland, it is to be expected that young adults in that country demonstrate high numeracy proficiency.
Resumo:
A maths support system for first-year engineering students with non-traditional entry qualifications has involved students working through practice questions structured to correspond with the maths module which runs in parallel. The setting was informal and there was significant one-to-one assistance. The non-traditional students (who are known to be less well prepared mathematically) were explicitly contacted in the first week of their university studies regarding the maths support and they generally seemed keen to participate. However, attendance at support classes was relatively low, on average, but varied greatly between students. Students appreciated the personal help and having time to ask questions. It seemed that having a small group of friends within the class promoted attendance – perhaps the mutual support or comfort that they all had similar mathematical difficulties was a factor. The classes helped develop confidence. Attendance was hindered by the class being timetabled too soon after the relevant lecture and students were reluctant to come with no work done beforehand. Although students at risk due to their mathematical unpreparedness can easily be identified at an early stage of their university career, encouraging them to partake of the maths support is an ongoing, major problem.