6 resultados para Energy conservation.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of sustainable assessment methods in the UK is on the rise, anticipating the future regulatory trajectory towards zero carbon by 2016. The indisputable influence of sustainable rating tools on UK building regulations conveys the importance of evaluating their effectiveness in achieving true sustainable design, without adversely effecting human health and wellbeing. This paper reviews indoor air-quality (IAQ) issues addressed by UK sustainable assessment tools, and the potential trade-offs between building energy conservation and IAQ. The barriers to effective adoption of IAQ strategies are investigated, including recommendations, suggestions, and future research needs. The review identified a fundamental lack of IAQ criteria in sustainable assessment tools aimed at the residential sector. The consideration of occupants’ health and well-being should be paramount in any assessment scheme, and should not be overshadowed or obscured by the drive towards energy efficiency. A balance is essential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on results from two types of data-logger attached to hawksbill turtles (Eretmochelys coriacea) in the breeding season at the Seychelles, Indian Ocean. Conventional time-depth recorders (TDRs) showed prolonged bouts of long dives to the seabed, consistent with benthic resting. This behaviour has been widely reported in sea turtles and appears to be a common feature for energy conservation. An Inter-Mandibular Angle Sensor (IMASEN) recorded mouth opening and buccal pumping by one turtle for 2.5 days. Buccal pumping occurred widely while the turtle was submerged, consistent with a function of olfactory sensory perception of the turtle's environment. However, buccal pumping stopped during the middle of long benthic dives consistent with the turtle entering a phase of sleep. It therefore appears that by recording buccal oscillations, it is possible to assess the state of consciousness of turtles allowing the eco-physiology of diving to be more fully explored. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Monte Carlo code (artis) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of ?-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model. © 2009 RAS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).