5 resultados para Electroluminescence
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A structurally pure, near-infrared emissive Nd-(5,7-dichloro-8-hydroxyquinoline)4 tetrakis complex has been synthesized. When incorporated as a dopant in the blue emissive, hole conducting polymer poly(N-vinylcarbazole), PVK, sensitized neodymium ion emission was observed following photo-excitation of the polymer host. OLED devices were fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. An external quantum efficiency of 1 x 10(-3)% and a near-infrared irradiance of 2.0 nW/mm(2) at 25 mA/mm(2) and 20 V was achieved using glass/ITO/PEDOT/ PVK:Nd-(5,7-dichloro-8-hydroxyquinoline)(4)/Ca/Al devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)(3) complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at similar to 1065 nm. was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the F-4(3/2) -> I-4(11/2) levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm(2) and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)(3)/Ca/Al devices. (c) 2005 Elsevier B.V. All rights reserved.
Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films
Resumo:
Narrow bandwidth red electroluminescence from OLED devices fabricated using a simple solution-based approach is demonstrated. A spin-casting method is employed to fabricate organic light emitting diode (OLED) devices comprising a poly(N-vinylcarbazole) (PVK) host matrix doped with a europium beta-diketonate complex, Eu(dbM)(3)(Phen) (dibenzoylmethanate, dbm; 1,10-phenanthroline, Phen) on glass/ indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Saturated red europium ion emission, based on the (5)Do ->F-7(2) transition, is centered at a wavelength of 612 nm with a full width at half maximum of 3.5 rim. A maximum external quantum efficiency of 6.3 x 10(-2) cd/A (3.1 X 10(-2)%) and a maximum luminance of 130 cd/M-2 at 400 mA/cm(2) and 25 V is measured for ITO/PEDOT/PVK:Eu(dbM)3(Phen)/Ca/Al devices. This measured output luminance is comparable to that of devices fabricated using more sophisticated small molecule evaporation techniques. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.
Resumo:
Pulsed laser deposition (PLD) from a hot pressed manganese doped ZnS target using a KrF laser, has produced a high rate deposition method for growing luminescent thin films. Good stoichiometric quality and typical luminescent crystal structures have been observed with a predominant hexagonal phase and little evidence of the cubic phase. The luminescent characteristics were determined by cathodoluminescence and photoluminescence excitation and stable electroluminescence was observed under pulsed dc conditions with a minimum brightness of 150 cd/m2. PLD film characteristics are compared with those observed in radio-frequency sputtered samples.