132 resultados para Electrochemical window

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of water content on room-temperature ionic liquids (RTILs) was studied by Karl Fischer titration and cyclic voltammetry in the following ionic liquids: tris(P-hexyl)tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,P-6,P-6][NTf2], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide [C(4)mpyrr][NTf2], 1-hexyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate [C(6)mim][FAP], 1-butyl3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][NTf2], N-hexyltriethylammonium bis(trifluoromethylsolfonyl)imide [N-6,N-2,N-2,N-2][NTf2], 1-butyl-3-methylirnidazolium hexafluorophosphate [C(4)mim][PF6], F6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium tetrafluoroborate [C(4)mim][BF4], 1-hexyl-3-methylimidazolium iodide [C(4)mim][I], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][OTf], and 1-hexyl-3-methylimidazolium chloride [C(6)mim][Cl]. In addition, electrochemically relevant properties such as viscosity, conductivity, density, and melting point of RTILs are summarized from previous literature and are discussed. Karl Fisher titrations were carried out to determine the water content of RTILs for vacuum-dried, atmospheric, and wet samples. The anion in particular was found to affect the level of water uptake. The hydrophobicity of the anions adhered to the following trend: [FAP](-) > [NTf2](-) > [PF6](-) > [BF4](-) > halides. Cyclic voltammetry shows that an increase in water content significantly narrows the electrochemical window of each ionic liquid. The electrochemical window decreases in the following order: vacuum-dried > atmospheric > wet at 298 K > 318 K > 338 K. The anodic and cathodic potentials vs ferrocene internal reference are also listed under vacuum-dried and atmospheric conditions. The data obtained may aid the selection of a RTIL for use as a solvent in electrochemical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis(trifluoromethyl)sulfonylimide, [NTf2]- anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The five room temperature ionic liquids: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CnMIM][N(Tf)(2)], n = 2, 4, 8, 10) and n-hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222][N(Tf)(2)]) were investigated as solvents in which to study the electrochemical oxidation of N,N,N',N'-tetramethyl-para-phenylenediamine (TMPD) and N,N,N',N'-tetrabutyl-paraphenylenediamine (TBPD), using 20 mul micro-samples under vacuum conditions. The effect of dissolved atmospheric gases on the accessible electrochemical window was probed and determined to be less significant than seen previously for ionic liquids containing alternative anions. Chronoamperometric transients recorded at a microdisk electrode were analysed via a process of non-linear curve fitting to yield values for the diffusion coefficients of the electroactive species without requiring a knowledge of their initial concentration. Comparison of experimental and simulated cyclic voltammetry was then employed to corroborate these results and allow diffusion coefficients for the electrogenerated species to be estimated. The diffusion coefficients obtained for the neutral compounds in the five ionic liquids via this analysis were, in units of 10(-11) m(2) s(-1), 2.62, 1.87, 1.12, 1.13 and 0.70 for TMPD. and 1.23, 0.80, 0.40, 0.52 and 0.24 for TBPD (listed using the same order for the ionic liquids as stated above). The most significant consequence of changing the cationic component of the ionic liquid was found to be its effect on the solvent viscosity; the diffusion coefficient of each species was found to be approximately inversely proportional to viscosity across the series of ionic liquids, in accordance with Walden's rule. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New protic ionic liquids (PILs) based on the morpholinium, N-methylmorpholinium, and N-ethyl morpholinium cations have been synthesized through a simple and atom-economic neutralization reaction between N-alkyl morpholine and formic acid. Their densities, refractive indices, thermal properties, and electrochemical windows have been measured. The temperature dependence of their dynamic viscosity and ionic conductivity have also been determined. The results allow us to classify them according to a classical Walden diagram and to evaluate their “fragility”. In addition, morpholinium based PILs exhibit a large electrochemical window as compared to other protic ionic liquids (up 2.91 V) and possess relatively high ionic conductivities of 10-16.8 mS·cm-1 at 25 °C and 21-29 mS·cm-1 at 100 °C, and a residual conductivity close to 1.0 mS·cm-1 at -15 °C. PIL-water mixtures exhibit high ionic conductivities up to 65 mS·cm-1 at 25 °C and 120 mS·cm-1 at 100 °C for morpholinium formate with water weight fraction ww = 0.6. Morpholinium based PILs studied in this work have a low cost and low toxicity, are good ionic liquids, and prove extremely fragile. They have wide applicable perspectives as electrolytes for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical windows of acetonitrile solutions doped with 0.1 m concentrations of several ionic liquids were examined by cyclic voltammetry at gold and platinum microelectrodes. These results were compared with those observed in the commonly used 0.1 m tetrabutylammonium perchlorate/acetonitrile system as well as with neat ionic liquids. The use of a trifluorotris(pentofluoroethyl)phosphate-based ionic liquid, specifically, as supporting electrolyte in acetonitrile solutions affords a wider anodic window, which is attributed to the high stability of the anionic component of these intrinsically conductive and thermally robust compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we consider two aspects of the deposition of metal clusters on an electrode surface. The formation of such clusters with the tip of a scanning tunneling microscope is simulated by atom dynamics. Subsequently the stability of these clusters is investigated by Monte Carlo simulations in a grand-canonical ensemble. In particular, the following systems were considered explicitly: Pd clusters on Au(111), Cu on Au(111), Ag on Au(111), Pb on Au(111) and Cu on Ag(111). The analysis of the results obtained for the different systems leads to the conclusion that optimal systems for nanostructuring are those where the metals participating have similar cohesive energies and negative heats of alloy formation. In this respect, the system Cu-Pd(111) is predicted as a good candidate for the formation of stable clusters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and kinetic aspects of 2-D irreversible metal deposition under potentiostatic conditions are analyzed by means of dynamic Monte Carlo simulations employing embedded atom potentials for a model system. Three limiting models, all considering adatom diffusion, were employed to describe adatom deposition. The first model (A) considers adatom deposition on any free substrate site on the surface at the same rate. The second model (B) considers adatom deposition only on substrate sites which exhibit no neighboring sites occupied by adatoms. The third model (C) allows deposition at higher rates on sites presenting neighboring sites occupied by adatoms. Under the proper conditions, the coverage (theta) versus time (t) relationship for the three cases can be heuristically fitted to the functional form theta = 1 - exp(-betat(alpha)), where alpha and beta are parameters. We suggest that the value of the parameter alpha can be employed to distinguish experimentally between the three cases. While model A trivially delivers a = 1, models B and C are characterized by alpha 1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

: Static calculation and preliminary kinetic Monte Carlo simulation studies are undertaken for the nucleation and growth on a model system which follows a Frank-van der Merwe mechanism. In the present case, we consider the deposition of Ag on Au(100) and Au(111) surfaces. The interactions were calculated using the embedded atom model. The kinetics of formation and growth of 2D Ag structures on Au(100) and Au(111) is investigated and the influence of surface steps on this phenomenon is studied. Very different time scales are predicted for Ag diffusion on Au(100) and Au(111), thus rendering very different regimes for the nucleation and growth of the related 2D phases. These observations are drawn from the application of a model free of any adjustable parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic monomers can be polymerised using the chloroaluminate room temperature melt obtained by mixing 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminium chloride miscible in all proportions with organic solvents as an electrolyte. The chloroaluminate (AlCl4-) anion generated in this melt having a tetrahedral symmetry with equal bond lengths and bond angles is the dopant to stabilize macrocation generated near the vicinity of anode to yield better conducting and better ordered electronically conducting free standing polymer film. In this communication, we discuss the polymers derived from benzene and pyrrole and their characterization by various techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding polyparaphenylene films were obtained on polymerization of benzene at potential of 1.2 V versus Al wire on substrates like platinum/transparent conducting glass as an anode. The electrolyte used was chloroaluminate room-temperature melt, which was prepared by intimate mixing of a 1:2 ratio of cetyl pyridinium chloride and anhydrous aluminum chloride to yield a viscous liquid. This liquid was miscible in all proportions with benzene and other aromatic hydrocarbons in all proportions at room temperature. The polyparaphenylene films deposited on platinum anode exhibited a prominent cyclic voltammetric peak at 0.7 V versus Al wire as reference electrode in chloroaluminate medium. The impedance spectra gave low charge transfer resistance. The diffused reflectance electronic spectra of the film gave the peaks at 386 nm and 886 nm. The PPP films showed electronic conductivity around 3–4 × 104 S/cm by four probe method under nitrogen atmosphere. The polymer was also characterized by IR spectra, thermal studies, and SEM studies.